This document gives pertinent information concerning the reissuance of the VPDES Permit listed below. This permit is being processed as a Minor, Municipal permit. The discharge results from the operation of a 0.0047 MGD wastewater treatment plant. This permit action consists of updating the WQS and updating boilerplate. The effluent limitations and special conditions contained in this permit will maintain the Water Quality Standards of 9 VAC 25-260-00 et seq.

1.	Facility Name and Mailing Address:	Unionville Elementar Wastewater Treatmen 200 Dailey Drive Orange, VA 22960		SIC Cod	e :	4952 WWTP	
	Facility Location:	10285 Zachary Taylor Unionville, VA 2256		County:		Orange	
	Facility Contact Name:	Mr. Larry A. Massie, Superintendent		Telephor	ne Number:	540-661-4550	
2.	Permit No.:	VA0060330		Expiration previous	on Date of permit:	June 24, 2009	
	Other VPDES Permits associ	ated with this facility:		None			
	Other Permits associated with	n this facility:		None			
	E2/E3/E4 Status:	N/A					
3.	Owner Name:	Orange County School	ol Board				
	Owner Contact/Title:	Mr. Larry A. Massie, Superintendent		Telepho	ne Number:	540-661-4550	
4.	Application Complete Date:	January 30, 2009					
	Permit Drafted By:	Joan C. Crowther		Date	Drafted:	June 24, 2009	
	Draft Permit Reviewed By:	Alison Thompson		Date	Reviewed:	June 25, 2009	
	Public Comment Period :	Start Date:		End	Date:		
5.	Receiving Waters Informatio	n: See Attachment 1 for	r the Flow I	Frequency	Determination	l	
	Receiving Stream Name:	Riga Run, UT					
	Drainage Area at Outfall:	0.234 sq.mi.	River Mil	le:	0.83		
	Stream Basin:	York River Subbasin:		N/A			
	Section:	3	Stream C	Stream Class: III			
	Special Standards:	None	Waterbody ID:		VAN-F07	7, Y017	
	7Q10 Low Flow:	0.0 MGD	7Q10 High Flow:		0.0 MGD		
	1Q10 Low Flow:	0.0 MGD	1Q10 High Flow		0.0 MGD		
	Harmonic Mean Flow:	0.0 MGD	30Q5 Flo	w: 0.0 MGD			
	303(d) Listed:	No	30Q10 Fl	ow: 0.0 MGD			
	TMDL Approved:	Yes	Date TMI Approved			EPA 11/4/05 Tissue due by 2018	
6.	Statutory or Regulatory Bas	is for Special Condition	ns and Efflu	ent Limita	tions:		
	✓ State Water Control	Law		\checkmark	EPA Guideli	nes	
	✓ Clean Water Act			√	Water Qualit	y Standards	
	✓ VPDES Permit Regu	lation			Other		
	✓ EPA NPDES Regula						

7.	Licensed Operator Requ	iirem	ents: Class IV	
8.	Reliability Class: Class	II		
9.	Permit Characterization	· ·		
	Private		Effluent Limited	 Possible Interstate Effect
	Federal	✓	Water Quality Limited	 Compliance Schedule Required
	State		Toxics Monitoring Program Required	Interim Limits in Permit
	✓ POTW		Pretreatment Program Required	Interim Limits in Other Document

10. Wastewater Sources and Treatment Description:

TMDL

The wastewater treatment plant consists of a grease trap, 1-6,000 septic tanks, a bar screen, a 2,000 gallon extended aeration basin, secondary clarifier, tablet chlorination, tablet dechlorination, and diffuse post aeration.

See Attachment 2 for a facility schematic/diagram.

TABLE 1 – Outfall Description									
Outfall Number	Discharge Sources	Treatment	Design Flow	Outfall Latitude and Longitude					
001	Domestic Wastewater	See Item 10 above.	0.0047 MGD	38° 15' 43.78" N 77° 57' 5.18" W					
See Attachment 3 for USGS Topographic Map: Unionville (DEQ #184C)									

11. Sludge Treatment and Disposal Methods:

The aerobic digested sludge is pumped and hauled by an independent contractor to the Massaponax Wastewater Treatment Plant (VA0025658) in Spotsylvania County, Virginia for disposal.

12. Discharges, Intakes, Monitoring Stations, Other Items in Vicinity of Discharge

TABLE 2						
Identification Number	Description of discharges, DEQ Ambient Water Quality Monitoring in the Vicinity of the Unionville Elementary School's Discharge					
VA0062961	Lightfoot Elementary School – Discharges into an unnamed tributary to Riga Run (38° 14' 51" / 77° 57' 12")					
8-RIG004.52	Riga Run - DEQ Ambient Water Quality Monitoring at Route 650 Bridge (38° 14' 24" / 77° 56' 23") Samples collected in 1999-2000 and 2006.					

13. Material Storage:

TABLE 3 - Material Storage						
Materials Description	Volume Stored	Spill/Stormwater Prevention Measures				
Chlorine Tablets	2 – 5 gallon buckets	Stored in covered container in locked storage building				
Dechlorination Tablets	2 – 5 gallon buckets	Stored in covered container in locked storage building.				

Site Inspection: Performed by Terry Nelson, DEQ Water Inspector on April 14, 2009. (See Attachment 4).

15. Receiving Stream Water Quality and Water Quality Standards:

a) Ambient Water Quality Data

There is no monitoring data for the receiving stream (Unnamed Tributary to Riga Run). The nearest downstream monitoring station is DEQ ambient water quality monitoring station 8-RIG004.52, located on Riga Run at the Route 650 bridge crossing. This station is located approximately 1.81 rivermiles downstream from the Outfall of VA0060330. The following information regarding Riga Run was taken from the 2008 Integrated Assessment:

Note:

No data exist for the 2008 assessment period. Evaluation of the segment from the previous assessment will be carried forward, including overall category and assessment documentation. According to Rule 8 of the 2008 Assessment Guidance Manual (07-2010), "fully supporting waters can only be carried forward as fully supporting for two additional reporting cycles with no new data." 2008 is the first assessment the segment is carried forward.

The information from the 2006 assessment is as follows:

DEQ ambient monitoring station 8-RIG004.52, at Route 650.

Historical Note:

DEQ station 8-RIG004.52 was added as a special study based on the 1998 303(d) listing of Terrys Run.

The aquatic life and wildlife uses are considered fully supporting. Since there is one fecal coliform bacteria exceedance in eight sampling events, the data are insufficient to determine support for the recreation use. The fish consumption use was not assessed.

Please see Attachment 5 for Planning Statement dated June 4, 2009.

b) Receiving Stream Water Quality Criteria

Part IX of 9 VAC 25-260 (360-550) designates classes and special standards applicable to defined Virginia river basins and sections. The receiving stream, unnamed tributary to Riga Run, is located within Section 3 of the York River Basin, and classified as a Class III water.

At all times, Class III waters must achieve a dissolved oxygen (D.O.) of 4.0 mg/L or greater, a daily average D.O. of 5.0 mg/L or greater, a temperature that does not exceed 32°C, and maintain a pH of 6.0-9.0 standard units (S.U.).

Attachment 6 details other water quality criteria applicable to the receiving stream.

Ammonia:

Staff has re-evaluated the receiving stream ambient monitoring data for pH and temperature (Attachment 8) and the effluent data for pH and finds no significant differences from the data used to establish ammonia criteria and subsequent effluent limits calculated in the 2004 permit reissuance. However, the 2004 ammonia effluent limitations were not incorporated into the 2004 permit reissuance. This was because during the 1999 permit reissuance new information was obtained that was not previously noted that indicated the discharge was intermittent; therefore, only the acute ammonia criteria should be used for to determine the ammonia effluent limitation. At that time, based on the 1999 Water Quality Standards (acute criteria only) the ammonia effluent limitation was determined to be 6.6 mg/L. A re-evaluation in 2004 of the ammonia criteria using the 2003 Water Quality Standards determined that the ammonia effluent limitation should be 10.13 mg/L. During this (2009) permit reissuance, the ammonia effluent limitations re-evaluation concurred with the 2004 re-evaluation by determining that a 10.13 mg/L ammonia effluent limitation would maintain water quality standards in the receiving stream. However, because the facility's effluent quality has been able to comply with the stricter ammonia effluent limitation established in the 1999 permit reissuance, the ammonia effluent limitation will remain at 6.6 mg/L for this permit reissuance. See Attachment 7 for the ammonia calculations.

Metals Criteria:

The Water Quality Criteria for some metals are dependent on the receiving stream's hardness (expressed as mg/l calcium carbonate). The average hardness of the receiving stream is 20 mg/L. This hardness value is based on stream data collected at the 8-RIG004.52 (Route 650) DEQ ambient water quality monitoring station between 1999 and 2000. See Attachment 8 for the hardness data. The temperature (21°C) and pH (7.1 S.U.) effluent data used in determining the water quality criteria were carried forward from the 2004 permit reissuance. There is no hardness data for this facility. Staff guidance suggests using a default hardness value of 50 mg/l CaCO₃ for streams east of the Blue Ridge. The hardness-dependent metals criteria shown in Attachment 6 are based on this value.

Bacteria Criteria:

The Virginia Water Quality Standards (9 VAC 25-260-170 B.) states sewage discharges shall be disinfected to achieve the following criteria:

1) E. coli bacteria per 100 ml of water shall not exceed the following:

E 1 (E 1: 01/100 1)	Geometric Mean ¹	Single Sample Maximum
Freshwater E. coli (N/100 ml)	126	235

¹For two or more samples [taken during any calendar month].

c) Receiving Stream Special Standards

The State Water Control Board's Water Quality Standards, River Basin Section Tables (9 VAC 25-260-360, 370 and 380) designates the river basins, sections, classes, and special standards for surface waters of the Commonwealth of Virginia. The receiving stream, unnamed tributary to Riga Run, is located within Section 3 of the York River Basin. There are no special standards for this stream section.

d) <u>Threatened or Endangered Species</u>

The Virginia DGIF Fish and Wildlife Information System Database was searched on June 3, 2009 for records to determine if there are threatened or endangered species in the vicinity of the discharge. No threatened or endangered species were identified. See Attachment 9 for the database documentation.

16. Antidegradation (9 VAC 25-260-30):

All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters.

The receiving stream has been classified as Tier 1 based on the receiving stream being a dry ditch. Permit limits proposed have been established by determining wasteload allocations which will result in attaining and/or maintaining all water quality criteria which apply to the receiving stream, including narrative criteria. These wasteload allocations will provide for the protection and maintenance of all existing uses.

17. Effluent Screening, Wasteload Allocation, and Effluent Limitation Development:

To determine water quality-based effluent limitations for a discharge, the suitability of data must first be determined. Data is suitable for analysis if one or more representative data points is equal to or above the quantification level ("QL") and the data represent the exact pollutant being evaluated.

Next, the appropriate Water Quality Standards (WQS) are determined for the pollutants in the effluent. Then, the Wasteload Allocations (WLA) are calculated. In this case since the critical flows 7Q10 and 1Q10 have been determined to be zero, the WLA's are equal to the WQS. The WLA values are then compared with available effluent data to determine the need for effluent limitations. Effluent limitations are needed if the 97th percentile of the daily effluent concentration values is greater than the acute wasteload allocation or if the 97th percentile of the four-day average effluent concentration values is greater than the chronic wasteload allocation. Effluent limitations are based on the most limiting WLA, the required sampling frequency, and statistical characteristics of the effluent data.

a) Effluent Screening:

Effluent data obtained from the permit application and DMRs has been reviewed and determined to be suitable for evaluation. Effluent data were reviewed; and, there were only three exceedances of the effluent limitations between December 2003 and April 2009. Ammonia monthly average and weekly maximum effluent limitations were violated in February 2004 (18.5 mg/L). The Total Residual Chlorine contact was violated in January 2008 (0.9 mg/L). See Attachment 10.

The following pollutants require a wasteload allocation analysis: Total Residual Chlorine, Ammonia as N.

b) <u>Mixing Zones and Wasteload Allocations (WLAs)</u>:

Wasteload allocations (WLAs) are calculated for those parameters in the effluent with the reasonable potential to cause an exceedance of water quality criteria. The basic calculation for establishing a WLA is the steady state complete mix equation:

	WLA	$= \frac{C_{o} [Q_{e} + (f)(Q_{s})] - [(C_{s})(f)(Q_{s})]}{Q_{e}}$
Where:	WLA	= Wasteload allocation
	C_{o}	= In-stream water quality criteria
	Q_e	= Design flow
	Q_s	= Critical receiving stream flow (1Q10 for acute aquatic life criteria; 7Q10 for chronic aquatic life criteria; 30Q10 for chronic ammonia criteria; harmonic mean for carcinogen-human health criteria; and 30Q5 for non-carcinogen human health criteria)
	f	= Decimal fraction of critical flow
	C_s	= Mean background concentration of parameter in the receiving stream.

The water segment receiving the discharge via Outfall 001 is considered to have a 7Q10 and 1Q10 of 0.0 MGD. As such, there is no mixing zone and the WLA is equal to the C_o .

c) <u>Effluent Limitations Toxic Pollutants, Outfall 001</u> –

9 VAC 25-31-220.D. requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an in-stream excursion of water quality criteria. Those parameters with WLAs that are near effluent concentrations are evaluated for limits.

The VPDES Permit Regulation at 9 VAC 25-31-230.D. requires that monthly and weekly average limitations be imposed for continuous discharges from POTWs and monthly average and daily maximum limitations be imposed for all other continuous non-POTW discharges.

1) Ammonia as N:

Staff evaluated the new ambient water quality data for the receiving stream and has concluded that is not significantly different than what was used to derive the 2004 ammonia limits (Attachment 7). However, due to the facility's demonstration that it can comply with the 1999 ammonia effluent limitations (6.6 mg/L) which are more stringent than those determined in the 2004 and 2009 ammonia effluent limitation evaluations (10.13 mg/L and 10.1 mg/L, respectively), the 1999 ammonia effluent limitations are proposed to continue in this permit reissuance.

2) Total Residual Chlorine:

Chlorine is used for disinfection and is potentially in the discharge. Staff calculated WLAs for TRC using current critical flows and the mixing allowance. In accordance with current DEQ guidance, staff used a default data point of 0.2 mg/L and the calculated WLAs to derive limits. A monthly average of 0.008 mg/L and a weekly average limit of 0.010 mg/L are proposed for this discharge (see Attachment 11).

3) Metals/Organics:

No data was available to review; therefore, no limits are needed.

d) <u>Effluent Limitations and Monitoring, Outfall 001 – Conventional and Non-Conventional Pollutants</u>

No changes to dissolved oxygen (D.O.), biochemical oxygen demand-5 day (BOD₅), total suspended solids (TSS), and pH limitations are proposed.

Dissolved Oxygen and BOD₅ were based on a stream model. Since the receiving stream is intermittent and the 7Q10 flow is zero, the stream model was run to maintain a D.O. of 5 mg/L. The stream model shows that once the unnamed tributary meets the next unnamed tributary approximately 0.83 rivermiles downstream, a D. O. of at least 5 mg/L is maintain until the stream flow reaches Riga Run with an effluent limit of 24 mg/L for BOD₅ and a D.O. of 6 mg/L. See Attachment 12 for the Stream model.

It is staff's practice to equate the Total Suspended Solids limits with the BOD₅ limits. TSS limits are established to equal BOD₅ limits since the two pollutants are closely related in terms of treatment of domestic sewage.

pH limitations are set at the water quality criteria.

E. coli limitations are in accordance with the Water Quality Standards 9 VAC25-260-170.

e) <u>Effluent Limitations and Monitoring Summary.</u>

The effluent limitations are presented in the following table. Limits were established for Flow, BOD₅, Total Suspended Solids, Ammonia, pH, Dissolved Oxygen, and Total Residual Chlorine.

The limit for Total Suspended Solids is based on Best Professional Judgement.

The mass loading (kg/d) for monthly and weekly averages were calculated by multiplying the concentration values (mg/l), with the flow values (in MGD) and a conversion factor of 3.785.

Sample Type and Frequency are in accordance with the recommendations in the VPDES Permit Manual.

18. Antibacksliding:

All limits in this permit are at least as stringent as those previously established. Backsliding does not apply to this reissuance.

19. Effluent Limitations/Monitoring Requirements:

Design flow is 0.0047 MGD.

Effective Dates: During the period beginning with the permit's effective date and lasting until the expiration date. Outfall No. 001 has been designated as effluent obtained after the post dechlorination unit.

PARAMETER	BASIS FOR	DISCHARGE LIMITATIONS				MONITORING REQUIREMENTS	
	LIMITS	Monthly Average	Weekly Average	Minimum	<u>Maximum</u>	Frequency	Sample Type
Flow (MGD)		NL	N/A	N/A	NL	1/D	Estimated
pН	2	N/A	N/A	6.0 S.U.	9.0 S.U.	1/D	Grab
BOD_5	4	24 mg/L 0.40 kg/day	36 mg/L 0.60 kg/day	N/A	N/A	1/M	Grab
Total Suspended Solids (TSS)	1	24 mg/L 0.40 kg/day	36 mg/L 0.60 kg/day	N/A	N/A	1/M	Grab
DO	4, 2	N/A	N/A	6.0 mg/L	N/A	1/D	Grab
Ammonia, as N (mg/L)	2	6.6 mg/L	6.6 mg/L	N/A	N/A	1/M	Grab
E. coli (Geometric Mean)	2	126 n/100mls	N/A	N/A	N/A	2/M	Grab
Total Residual Chlorine (after contact tank)	2, 3	N/A	N/A	1.0 mg/L	N/A	1/D	Grab
Total Residual Chlorine (after dechlorination)	2	$0.008 \; \text{mg/L}$	0.010 mg/L	N/A	N/A	1/D	Grab

The basis for the limitations codes are:

MGD = Million gallons per day.

1/D = Once every day.

1/B = Once every day.

1/M = Once every month.

1/M = Once every month.

1/M = Once every month.

2/M = Two per month at least 7

3. DEQ Disinfection Guidance

S.U. = Standard units.

days apart.

4. Stream model (undated)

Grab = An individual sample collected over a period of time not to exceed 15-minutes.

20. Other Permit Requirements:

a) Part I.B. of the permit contains additional chlorine monitoring requirements, quantification levels and compliance reporting instructions.

A minimum chlorine residual must be maintained at the exit of the chlorine contact tank to assure adequate disinfection. No more that 10% of the monthly test results for TRC at the exit of the chlorine contact tank shall be <1.0 mg/L with any TRC <0.6 mg/L considered a system failure. Monitoring at numerous STPs has concluded that a TRC residual of 1.0 mg/L is an adequate indicator of compliance with the $E.\ coli$ criteria. $E.\ coli$ limits are defined in this section as well as monitoring requirements to take effect should an alternate means of disinfection be used.

9 VAC 25-31-190.L.4.c. requires an arithmetic mean for measurement averaging and 9 VAC 25-31-220.D. requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an in-stream excursion of water quality criteria. Specific analytical methodologies for toxics are listed in this permit section as well as quantification levels (QLs) necessary to demonstrate compliance with applicable permit limitations or for use in future evaluations to determine if the pollutant has reasonable potential to cause or contribute to a violation. Required averaging methodologies are also specified.

21. Other Special Conditions:

- a) <u>95% Capacity Reopener.</u> The VPDES Permit Regulation at 9 VAC 25-31-200.B.2. requires all POTWs and PVOTWs develop and submit a plan of action to DEQ when the monthly average influent flow to their sewage treatment plant reaches 95% or more of the design capacity authorized in the permit for each month of any three consecutive month period. This facility is a POTW.
- b) O&M Manual Requirement. Required by Code of Virginia §62.1-44.19; Sewage Collection and Treatment Regulations, 9 VAC 25-790; VPDES Permit Regulation, 9 VAC 25-31-190.E. Within 90 days of the effective date of this permit, the permittee shall submit for approval an Operation and Maintenance (O&M) Manual or a statement confirming the accuracy and completeness of the current O&M Manual to the Department of Environmental Quality, Northern Regional Office (DEQ-NRO). Future changes to the facility must be addressed by the submittal of a revised O&M Manual within 90 days of the changes. Noncompliance with the O&M Manual shall be deemed a violation of the permit.
- c) <u>Licensed Operator Requirement.</u> The Code of Virginia at §54.1-2300 et seq. and the VPDES Permit Regulation at 9 VAC 25-31-200 C, and Rules and Regulations for Waterworks and Wastewater Works Operators (18 VAC 160-20-10 et seq.) requires licensure of operators. This facility requires a Class IV operator.
- d) Reliability Class. The Sewage Collection and Treatment Regulations at 9 VAC 25-790 require sewage treatment works to achieve a certain level of reliability in order to protect water quality and public health consequences in the event of component or system failure. Reliability means a measure of the ability of the treatment works to perform its designated function without failure or interruption of service. The facility is required to meet a reliability Class of II
- e) <u>CTC, CTO Requirement.</u> The Code of Virginia § 62.1-44.19; Sewage Collection and Treatment Regulations, 9 VAC 25-790 requires that all treatment works treating wastewater obtain a Certificate to Construct prior to commencing construction and to obtain a Certificate to Operate prior to commencing operation of the treatment works.
- f) <u>Treatment Works Closure Plan.</u> The State Water Control Law §62.1-44.15:1.1, makes it illegal for an owner to cease operation and fail to implement a closure plan when failure to implement the plan would result in harm to human health or the environment. This condition is used to notify the owner of the need for a closure plan where a facility is being replaced or is expected to close.
- g) <u>Water Quality Criteria Reopener.</u> The VPDES Permit Regulation at 9 VAC 25-31-220 D. requires establishment of effluent limitations to ensure attainment/maintenance of receiving stream water quality criteria. Should effluent monitoring indicate the need for any water quality-based limitations, this permit may be modified or alternatively revoked and reissued to incorporate appropriate limitations.
- h) <u>Sludge Reopener.</u> The VPDES Permit Regulation at 9 VAC 25-31-200.C.4. requires all permits issued to treatment works treating domestic sewage (including sludge-only facilities) include a reopener clause allowing incorporation of any applicable standard for sewage sludge use or disposal promulgated under Section 405(d) of the CWA. The facility includes a sewage treatment works.
- i) <u>Sludge Use and Disposal.</u> The VPDES Permit Regulation at 9 VAC 25-31-100.P., 220.B.2., and 420-720, and 40 CFR Part 503 require all treatment works treating domestic sewage to submit information on their sludge use and disposal practices and to meet specified standards for sludge use and disposal. The facility includes a treatment works treating domestic sewage.

<u>Permit Section Part II.</u> Part II of the permit contains standard conditions that appear in all VPDES Permits. In general, these standard conditions address the responsibilities of the permittee, reporting requirements, testing procedures and records retention.

a) Special Conditions:

1) The "Indirect Dischargers" special condition was deleted from this permit reissuance because this wastewater treatment plant serves only the elementary school so all wastewater sources are already under the control of the Orange County School Board.

b) Monitoring and Effluent Limitations:

- 1) The additional bacterial effluent limitations and monitoring requirement as specified in Part I. B.2 of the 2004 permit reissuance has been deleted from the 2009 permit reissuance. This special condition was incorporated into the 2004 permit reissuance to ensure that the chlorination and dechlorination units were operating efficiently so that the *E. coli* water quality standard was being maintained. By letter dated September 16, 2005, DEQ acknowledged that the *E. coli* testing had been successfully completed and no further *E. coli* sampling was necessary.
- 2) Due to the downstream *E. coli* bacteria impairment (Terrys Run), an *E. coli* effluent limitation of 126 n/100 mls at a sampling frequency of twice per month (at least seven days apart) was added to the permit's effluent page, Part I.A.1. While the unnamed tributary was not specifically included in the Terrys Run Bacteria TMDL, all upstream point source discharges were included. The unnamed tributary will not be included in the Lake Anna PCB TMDL. Bacteria TMDL WLA for Unionville Elementary School VPDES Permit No. VA0060330 is 8.21E+09 CFU of *E. coli* per year which equates to 126 n/100 mLs. (See Item 26 of the Fact Sheet for more information.)

24. Variances/Alternate Limits or Conditions:

There are no variances, alternate limits, or conditions associated with this permit reissuance.

25. Public Notice Information:

First Public Notice Date:

Second Public Notice Date:

Public Notice Information is required by 9 VAC 25-31-280 B. All pertinent information is on file and may be inspected, and copied by contacting the: DEQ Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193, Telephone No. (703) 583-3925, joan.crowther@deq.virginia.gov. See Attachment 13 for a copy of the public notice document.

Persons may comment in writing or by email to the DEQ on the proposed permit action, and may request a public hearing, during the comment period. Comments shall include the name, address, and telephone number of the writer, and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The DEQ may decide to hold a public hearing if public response is significant. Requests for public hearings shall state the reason why a hearing is requested, the nature of the issues proposed to be raised in the public hearing and a brief explanation of how the requester's interests would be directly and adversely affected by the proposed permit action. Following the comment period, the Board will make a determination regarding the proposed permit action. This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given.

26. 303 (d) Listed Stream Segments and Total Maximum Daily Loads (TMDL):

<u>TMDL Reopener:</u> This special condition is to allow the permit to reopened if necessary to bring it in compliance with any applicable TMDL that may be developed and approved for the receiving stream.

The unnamed tributary flows into Riga Run, which flows into Terrys Run, which in turn flows into Lake Anna. A segment of Terrys Run (VAN-F07R TRY01A00), beginning at the confluence with Riga Run and continuing

downstream to the confluence with Lake Anna, is listed as not supporting the (1) fish consumption use due to PCBs in fish tissue and (2) recreation use due to *E. coli*.

- 1. Fish Consumption Use Impairment: The fish consumption use is categorized as impaired due to a Virginia Department of Health, Division of Health Hazards Control, PCB fish consumption advisory. The advisory, dated 6/15/04 and modified 12/13/04 and 08/31/07, limits consumption of bluegill sunfish, carp, channel catfish, largemouth bass, striped bass, white catfish, and white perch to no more than two meals per month. The advisory also bans the consumption of gizzard shad. The affected area includes the entirety of Lake Anna and its tributaries Contrary Creek, Gold Mine Creek, and Terrys Run.
- 2. Recreation Use Impairment: Sufficient excursions from the instantaneous E. coli bacteria criterion (8 of 19 samples 42.1%) were recorded at DEQ's ambient water quality monitoring station (8-TRY004.98) at the Route 629 crossing to assess this stream segment as not supporting of the recreation use goal for the 2008 water quality assessment. The segment was previously listed for a fecal coliform bacteria impairment, from 1998 through 2004. The E. coli bacteria impairment was first listed in 2006.

Several segments of Lake Anna downstream of Terrys Run are listed as not supporting the fish consumption use due to PCBs in fish tissue. The fish consumption use is categorized as impaired due to a Virginia Department of Health, Division of Health Hazards Control, PCB fish consumption advisory. The advisory, dated 6/15/04 and modified 12/13/04 and 08/31/07, limits consumption of bluegill sunfish, carp, channel catfish, largemouth bass, striped bass, white catfish, and white perch to no more than two meals per month. The advisory also bans the consumption of gizzard shad. The affected area includes the entirety of Lake Anna and its tributaries Contrary Creek, Gold Mine Creek, and Terrys Run. The impaired segments listed are:

- 1. Terrys Run/Lake Anna (VAN-F07L_TRY01A04) segment includes the Terrys Run arm of Lake Anna. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from four species (bluegill sunfish, carp, largemouth bass, white catfish) of fish sampled in 2003 and in tissue from five species (bluegill sunfish, carp, channel catfish, gizzard shad, white perch) of fish sampled in 2006 (7 total excursions) at monitoring station 8-TRY001.33.
- 2. Lake Anna/Pamunkey Creek (VAN-F07L_PMC01A04) segment includes the Pamunkey Creek arm of Lake Anna beginning at the confluence with the Terrys Run arm of the lake and continuing downstream until the confluence with the North Anna River at The Splits. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from two species of fish (channel catfish, striped bass) sampled in 2006 (four total excursions) at monitoring station 8-PMC002.13.
- 3. Lake Anna (VAN-F07L_NAR03A02) segment includes the upper portion North Anna River portion of Lake Anna, beginning at the boundary of F07, and continues downstream until the Route 208 bridge.
- 4. Lake Anna (VAN-F07L_NAR02A02) segment includes the middle portion of Lake Anna, beginning at the Route 208 bridge, and continues downstream until the northern end of the Route 690 bridge. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from one specie of fish (channel catfish) sampled in 2006 (three total excursions) at monitoring station 8-NAR044.68.
- 5. Lake Anna (VAN-F07L_NAR01A02) segment includes the lower portion of Lake Anna, beginning near the northern end of the Route 690 bridge, and continues downstream until the dam. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from three species of fish (carp, channel catfish, largemouth bass) sampled in 2003 (four total excursions) and in tissue from one specie of fish (carp) sampled in 2006 at monitoring station 8-NAR034.92.

TMDL Status:

Terrys Run (VAN-F07R_TRY01A00) Recreation Use Impairment: A bacteria TMDL for the Terrys Run watershed was developed and approved by the U.S. EPA on November 4, 2005. The SWCB approved the TMDL on September 27, 2006. The sources of bacteria requiring reductions are pet, livestock and wildlife waste delivered directly to the stream or via pastureland or forest, human contributions from straight pipes, failing septic systems, and leaking sanitary sewers, and biosolid application.

The PCB TMDL for Terrys Run and all the segments in Lake Anna has not yet been completed. The PCB TMDL for Terrys Run/Lake Anna segments (except for segment VAN-F07L_NAR01A02) are scheduled for due by 2018. Segment VAN-F07L_NAR01A02 is scheduled to be completed by 2014. Given the TMDL process, all of the Terrys Run/Lake Anna PCB impaired segments are expected to be completed by 2014.

Special Permit considerations: None

27. Additional Comments:

Previous Board Action(s): None.

Staff Comments: The permit reissuance was delayed due to staff workload.

Public Comment:

EPA Checklist: The checklist can be found in Attachment 14.

Unionville Elementary School Wastewater Treatment Plant Fact Sheet Attachments

Attachment	Description
1	Flow Frequency Memo dated November 3, 1998
2	Facility Diagram
3	USGS Topographic Map – Unionville, DEQ # 184C
4	Site Inspection Report dated April 14, 2009 by Terry Nelson, DEQ-NRO Water Inspector
5	Planning Statement for Unionville Elementary School, dated June 4, 2009
6	Freshwater Water Quality Criteria/ Wasteload Allocated Analysis dated June 23, 2009
7	Ammonia Calculations for 1999, 2004 and 2009
8	Hardness, Temperature and pH – Riga Run Stream Data
9	DGIF Threatened and Endangered Species Database Search dated June 3, 2009
10	Effluent DMR data – December 03- April 09
11	Total Chlorine Residual Calculation dated June 23, 2009
12	Stream model (DO & BOD ₅)
13	Public Notice
14	EPA Checklist dated June 23, 2009

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION

Water Quality Assessments and Planning

629 E. Main Street P.O. Box 10009 Richmond, Virginia 23240

SUBJECT: Flow Frequency Determination

Unionville Elementary School STP - #VA0060330

TO: James Olson, NRO

FROM: Paul E. Herman, P.E., WQAP

DATE: November 3, 1998

COPIES: Ron Gregory, Charles Martin, File

This memo supercedes my November 19,1993 memo to Joan Crowther concerning the subject VPDES permit.

The Unionville Elementary School STP discharges to an unnamed tributary of the Riga Run near Unionville, VA. Stream flow frequencies are required at this site by the permit writer for the purpose of calculating effluent limitations for the VPDES permit.

The values at the discharge point were determined by inspection of the USGS Unionville Quadrangle topographical map which shows the receiving stream as intermittent at the discharge point. The flow frequencies for intermittent streams are 0.0 cfs for the 1Q10, 7Q10, 30Q5, high flow 1Q10, high flow 7Q10, and the harmonic mean. For modeling purposes, flow frequencies have been determined for the first perennial reach downstream of the discharge point.

The USGS conducted several flow measurements on the Terrys Run from 1989 to 1992. The measurements were made at the Route 629 bridge near Tatum, VA. The measurements made by the USGS correlated very well with the same day daily mean values from the continuous record gage on the North Fork Rivanna River near Proffit, VA #02032680. The measurements and daily mean values were plotted on a logarithmic graph and a best fit line was drawn through the data points. The required flow frequencies from the reference gage were plotted on the regression line and the associated flow frequencies at the measurement site were determined from the graph.

The flow frequencies at the perennial point were determined by using the values at the measurement site and adjusting them by proportional drainage areas. The data for the reference gage, the measurement site and the perennial point are presented below:

N.F. Rivanna River near Proffit, VA (#02032680):

Terrys Run at Route 629 near Tatum, VA (#01670230):

UT to Riga Run at perennial point:

Drainage Area = 0.33 mi^2 1Q10 = 0.0 cfs High Flow 1Q10 = 0.007 cfs 7Q10 = 0.001 cfs High Flow 7Q10 = 0.010 cfs3005 = 0.004 cfs HM = 0.039 cfs

The high flow months are December through June.

This analysis assumes there are no significant discharges, withdrawals or springs influencing the flow in the unnmaed tributary upstream of the perennial point.

If there are any questions concerning this analysis, please let me know.

Attachment 3

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY NORTHERN REGIONAL OFFICE

13901 Crown Court, Woodbridge, Virginia 22193 (703) 583-3800 Fax (703) 583-3821 www.deq.virginia.gov

David K. Paylor Director

Thomas A. Faha Regional Director

April 29, 2009

Mr. Larry Massie Acting Superintendent Orange County Public Schools 437 Waugh Boulevard Orange, VA 22960

Re: Unionville Elementary School STP Inspection - VA0060330

Dear Mr. Massie:

Preston Bryant

Secretary of Natural Resources

Attached is a copy of the site inspection report generated while conducting a Facility Technical Inspection at the Unionville Elementary School - Sewage Treatment Plant (STP) on April 14, 2009. The compliance staff would like to thank Mr. Tim Jenkins for his time and assistance during the inspection.

If you have any questions or comments concerning this report, please feel free to contact me at the Northern Regional Office at (703) 583-3833 or by E-mail at twnelson@deq.virginia.gov.

Sincerely,

Terry Nelson

Environmental Specialist II

Terry Nelson

cc:

Permit/DMR File OWCP - SGStell

Electronic Copy: Compliance Manager; Compliance Auditor

Electronic Copy: Mr. Tim Jenkins - Dabney & Crooks

DEQ WASTEWATER FACILITY INSPECTION REPORT PREFACE

			<u> </u>	VELVE	<u> </u>				
VPDES/State Certifi	cation No.	(RE) Issua	ance Da	te	Amendment Date		Expiration Da	ite	
VA006033	30	06/24	/2004				06/24/2009		
Fac	lity Name	-	Address				Telephone Number		
Unionville E	lementary Sch	nool	10285 Zachary Taylor Highway Unionville, VA 22567			ау	(540) 661-4540		
Ow	ner Name		Address				Telephone Nur	nber	
Orange Coul	nty Public Sch	ools			Waugh Boulevard ange, VA 22960		(540) 661-4	550	
Respo	nsible Official				Title		Telephone Nu	mber	
Mr. L	arry Massie			Actin	g Superintendent		(540) 661-4	550	
Respon			Operat	or Cert. Class/number		Telephone Nu	mber		
Doug			Clas	s I / 1909000367		(540) 373-0	380		
			TYPE (OF FACI	ILITY:				
DOMESTIC						INDUSTR	IAL		
Federal		Major			Major		Primary	,	
Non-federal	Non-federal X Min			х	Minor		Seconda	iry	
INFL	UENT CHARACT	TERISTICS:	-		DESIGN:				
		Flow	<u> </u>		4,700 gal/day	, la			
		Population Se	rved		Variable				
		Connections Se	onnections Served One school BOD ₅ No data						
		BOD ₅			No data				
		TSS	No data						
	EFFLUE	NT LIMITS: U	Inits in	mg/L	unless otherwise sp	ecified.			
Parameter	Min.	Avg.	М	iax.	Parameter	Min.	Avg.	Max.	
Flow (MGD)		0.0047		NL	BOD₅		24	36	
pH (S.U.)	6.0		9	9.0	Total Contact Cl	1.0			
TSS		24	:	36	Inst Tech Min Cl	0.6			
DO	6.0				Inst Res Max Cl		0.008	0.010	
NH ₃		6.6	•	5.6					
Receiving Str				UT to Riga	Run				
Basin Discharge Point				k River	ver				
			t (LAT)		38° 15 38	3" N			
		Discharge Point	(LONG)	77° 57' 00)" W			
					L		And the second second	and the second s	

Virginia Department of Environmental Quality Northern Regional Office

FOCUSED CEI TECH/LAB INSPECTION REPORT

		- Cabaal	INSPECTION DATE:	April 14, 200)9	
FACILITY NA	ME: Unionville Ele	ementary School	INSPECTOR	Terry Nelson		
PERMIT No.:	VA006033	0	REPORT DATE:	April 23, 2009		
TYPE OF FACILITY:	☑ Municipal	☐ Major	TIME OF INSPECTION:	Arrival 0930	Departure 1000	
	Industrial	✓ Minor	TOTAL TIME SPENT	4 hours		
☐ Federal		Small Minor	(including prep &			
	□HP □LP		travel)			
PHOTOGRAP	PHS: ▼ Yes	□ No	UNANNOUNCED INSPECTION?	□ Ye	s 🔽 No	
REVIEWED BY / Date:						
PRESENT DU	RING INSPECT	ION: Tim Jenki	ns, Dabney & Crooks			

TECHNICAL INSPECTION

1.	Has there been any new construction? (Last inspection April 2005) • If so, were plans and specifications approved? Comments:	□ Yes	☑ No
	Is the Operations and Maintenance Manual approved and up-to-date? <u>Comments</u> : Outdated permit in Appendix, DEQ phone numbers are not consistent (703-583-3800 is recommended), outdated Chain of Custody for Patton, Harris, and Rust, some test methods listed are no longer approved	□ Yes	⊠ No
	Are the Permit and/or Operation and Maintenance Manual specified licensed operator being met? <u>Comments:</u>	☑ Yes	. No
4.	Are the Permit and/or Operation and Maintenance Manual specified operator staffing requirements being met? <u>Comments</u> :	▽ Yes	□ No
5.	Is there an established and adequate program for training personnel? Comments:	☑ Yes	□No
6.	Are preventive maintenance task schedules being met? Comments:	☑ Yes	□ No
7.	Does the plant experience any organic or hydraulic overloading? Comments:	□ Yes	☑ No
8.	Curity and the last transfer of	□ Yes	☑ No
9.		☐ Yes	□No
10). Is the plant alarm system operational and tested regularly? Comments:	▼ Yes	□ No

<u>Virginia Department of Environmental Quality</u> <u>Northern Regional Office</u>

FOCUSED CEI TECH/LAB INSPECTION REPORT

		Cabaa!	INSPECTION DATE:	April 14, 200	19
FACILITY NA	ME: Unionville Ele	mentary School	INSPECTOR	Terry Nelson	1
PERMIT No.:	VA0060330)	REPORT DATE:	April 23, 200	19
TYPE OF FACILITY:	☑ Municipal	Г Major	TIME OF INSPECTION:	Arrival 0930	Departure 1000
I ACILIII.	Industrial	™ Minor	TOTAL TIME SPENT	4 hours	
	Federal	Small Minor	(including prep &		
			travel)		
PHOTOGRAP	PHS: F Yes	□ No.	UNANNOUNCED INSPECTION?	ΓYes	s 🔽 No
REVIEWED B	SY / Date: 4/	4/28/09			
PRESENT DU	IRING INSPECTI	ON: Tim Jenkir	ns, Dabney & Crooks		

TECHNICAL INSPECTION

1.	Has there been any new construction? (Last inspection April 2005) • If so, were plans and specifications approved?	୮ Yes	₩ No
	<u>Comments</u> :	L	
2.	Is the Operations and Maintenance Manual approved and up-to-date? <u>Comments:</u> Outdated permit in Appendix, DEQ phone numbers are not consistent (703-583-3800 is recommended), outdated Chain of Custody for Patton, Harris, and Rust, some test methods listed are no longer approved	□ Yes	₹ No
	Are the Permit and/or Operation and Maintenance Manual specified licensed operator being met? Comments:	▼ Yes	□ No
4.	Are the Permit and/or Operation and Maintenance Manual specified operator staffing requirements being met? Comments:	▽ Yes	□ No
5.	Is there an established and adequate program for training personnel? Comments:	▼ Yes	□ No
6.	Are preventive maintenance task schedules being met? Comments:	F Yes	□ No
7.	Does the plant experience any organic or hydraulic overloading? Comments:	□ Yes	₽ No
8.	Have there been any bypassing or overflows since the last inspection? Comments:	□ Yes	₩ No
9.	the state of the s	□Yes	□ No
10). Is the plant alarm system operational and tested regularly? Comments:	₩ Yes	□ No

Permit # VA0060330

TECHNICAL INSPECTION

11. Is sludge disposed of in accordance with the approved sludge management plan? Comments: Wheeler Septic takes sludge to Massaponax WWTF	☑ Yes	□ No
12. Is septage received?	Yes	▽ No
If so, is septage loading controlled, and are appropriate records		
maintained?		
Comments:		
13. Are all plant records (operational logs, equipment maintenance, industrial waste	☑ Yes	□ No
contributors, sampling and testing) available for review and are records		
adequate?		
Comments:		
14. Which of the following records does the plant maintain?		
☑ Operational logs ☑ Instrument maintenance & calibration		
Mechanical equipment maintenance 🔲 Industrial Waste Contribution (Municipal facili	ities)	
Comments:		
15. What does the operational log contain?		
▼ Visual observations Flow Measurement Laboratory results Process adjusted	stments	
☐ Control calculations ☐ Other (specify)	tation taken to the same of th	our administration of the second
Comments:		
16. What do the mechanical equipment records contain?		
As built plans and specs Manufacturers instructions Lubrication schedules		
☐ Spare parts inventory ☐ Equipment/parts suppliers		
☐ Other (specify)		
Comments:		
17. What do the industrial waste contribution records contain (Municipal only)?		
☐ Waste characteristics ☐ Impact on plant ☐ Locations and discharge types		
Other (specify)		
Comments: Not applicable		
18. Which of the following records are kept at the plant and available to personnel?		
Equipment maintenance records Operational log Industrial contributor records		
☑ Instrumentation records ☑ Sampling and testing records		
Comments:		
19. List records not normally available to plant personnel and their location:	hoole	
<u>Comments:</u> Major maintenance records stored at Orange County Sci superintendent office.	10013	
20. Are the records maintained for the required time period (three or five years)?	▼ Yes	□ No
Comments:	ix res	J INO

UNIT PROCESS EVALUATION SUMMARY SHEET

UNIT PROCESS	APPLICABLE	PROBLEMS*	COMMENTS
Sewage Pumping			
Flow Measurement (Influent)			
Screening/Comminution			
Grit Removal			
Flow Equalization	X		
Primary Sedimentation			
Septic Tank and Sand Filter	X		
Activated Sludge Aeration	X		
Secondary Sedimentation	Х		
Flocculation			
Tertiary Sedimentation			
Filtration			
Chlorination	X		
Dechlorination	X		
Post Aeration	X		
Flow Measurement (Effluent)	X		
Plant Outfall	X		
Sludge Pumping			
Aerobic Digestion			
		l	

- * Problem Codes
- 1. Unit Needs Attention
- 2. Abnormal Influent/Effluent
- 3. Evidence of Equipment Failure

- 4. Unapproved Modification or Temporary Repair5. Evidence of Process Upset
- 6. Other (explain in comments)

INSPECTION OVERVIEW AND CONDITION OF TREATMENT UNITS

- Operators are at the facility approximately 30 minutes per visit. The plant is not manned when school
 is not in session or no discharge is anticipated.
- Orange County schools were not in session during the inspection.
- A grease trap and septic tank precede the treatment system. Orange County Schools maintains the grease trap and septic tank. The septic tank was pumped out in July 2008.
- The secondary treatment system is a package plant that contains a sludge holding tank, aeration basins, and clarifier.
- The log book is stored in a waterproof cabinet. The bg book included entries for minor maintenance performed on the system.
- Mr. Jenkins cycled all the blowers during the inspection. No problems were noted for the blowers.
- The aeration basin color was an unusual shade of brown that stabilized as the recycle pumps ran. Without school in session, negligible influent flow had been received since last Friday according to Mr. Jenkins.
- A slight scum layer had formed on the clarifier, but it quickly dispersed when the return sludge system cycled on.
- Thick weeds were observed growing around several of the plant structures. According to Mr. Jenkins, school staff performs the mowing and weed removal.
- Ground settling/subsidence was observed in several locations around the treatment plant.
- The chlorine contact tank is below ground and is covered by a shed. Mr. Jenkins unlocked the shed. Chemicals are stored in the shed and proper clean-up of spills is difficult due to limit space.
- Mr. Jenkins collects the chlorination sample at the inlet to the dechlorination unit.
- A tablet feeder is used for dechlorination.
- From here, the water flows downhill to the outfall.

Permit #	VA0060330
I Cititie #	TAGGGGGG

EFFLUENT FIELD DATA:

Flow	NA MGD	Dissolved Oxygen	NA mg/L		NA mg/L
рH	NA S.U.	Temperature	NA °C	TRC (Final Effluent)	NA mg/L
Was a condu	Sampling Inspection	on Yes ((see Sampling Inspec	tion Report) 🔽 No	

CONDITION OF OUTFALL AND EFFLUENT CHARACTERISTICS:

1.	Type of outfall: Shore based ☐ Submerged	Diffuser?	□ No
2.	Are the outfall and supporting structures in goo	d condition? Yes	No No
2	Final Effluent (evidence of following problems):	Sludge bar	☐ Grease
3.	☐ Turbid effluent ☐ Visible foam	Unusual color	Cil sheen
4.	Is there a visible effluent plume in the receiving	g stream?	□ No
5.	Receiving stream: Comments: Outfall was not inspected as ther	Indication of problems	

REQUIRED CORRECTIVE ACTIONS:

No required corrective actions.

NOTES and COMMENTS:

- 1. The facility appears to be well operated.
- 2. Orange County grounds keeping staff should properly trim the weeds and grass within the treatment plant area.
- 3. DEQ staff recommends grading or filling the areas where the ground had subsided.

To: Joan C. Crowther From: Katie Conaway

Date: Revised June 4, 2009

Subject: Planning Statement for VA0060330- Unionville Elementary School WWTP

Discharge Type: Municipal/Minor Discharge Flow: 0.0047 MGD

Receiving Stream: Riga Run, UT

Latitude / Longitude: 38° 15' 43.78"/-77° 57'5.18"

Waterbody ID: F07/YO17

1. Is there monitoring data for the receiving stream?

No.

- If yes, please attach latest summary.

- If no, where is the nearest downstream monitoring station.

There is no monitoring data for the receiving stream (Unnamed Tributary to Riga Run). The nearest downstream monitoring station is DEQ ambient water quality monitoring station 8-RIG004.52, located on Riga Run at the Route 650 bridge crossing. This station is located approximately 1.81 rivermiles downstream from the Outfall of VA0060330. The following information regarding Riga Run was taken from the 2008 Integrated Assessment:

Class III, Section 3.

Note: No data exist for the 2008 assessment period. Evaluation of the segment from the previous assessment will be carried forward, including overall category and assessment documentation. According to Rule 8 of the 2008 Assessment Guidance Manual (07-2010), "fully supporting waters can only be carried forward as fully supporting for two additional reporting cycles with no new data." 2008 is the first assessment the segment is carried forward.

The information from the 2006 assessment is as follows: DEQ ambient monitoring station 8-RIG004.52, at Route 650.

Historical Note: DEQ station 8-RIG004.52 was added as a special study based on the 1998 303(d) listing of Terrys Run.

The aquatic life and wildlife uses are considered fully supporting. Since there is one fecal coliform bacteria exceedance in eight sampling events, the data are insufficient to determine support for the recreation use. The fish consumption use was not assessed.

2. Is the receiving stream on the current 303(d) list?

No, the unnamed tributary to Riga Run is not the current 303(d) list.

- If yes, what is the impairment?

N/A

- Has the TMDL been prepared?

N/A

- If yes, what is the WLA for the discharge?

N/A

- If no, what is the schedule for the TMDL?

N/A

3. If the answer to (2) above is no, is there a downstream 303(d) listed impairment?

Yes.

- If yes, what is the impairment?

The unnamed tributary flows into Riga Run, which flows into Terrys Run, which in turn flows into Lake Anna.

A segment of Terrys Run (VAN-F07R_TRY01A00), beginning at the confluence with Riga Run and continuing downstream to the confluence with Lake Anna, is listed as not supporting the (1) fish consumption use due to PCBs in fish tissue and (2) recreation use due to E. coli.

- 1. Fish Consumption Use Impairment: The fish consumption use is categorized as impaired due to a Virginia Department of Health, Division of Health Hazards Control, PCB fish consumption advisory. The advisory, dated 6/15/04 and modified 12/13/04 and 08/31/07, limits consumption of bluegill sunfish, carp, channel catfish, largemouth bass, striped bass, white catfish, and white perch to no more than two meals per month. The advisory also bans the consumption of gizzard shad. The affected area includes the entirety of Lake Anna and its tributaries Contrary Creek, Gold Mine Creek, and Terrys Run.
- 2. Recreation Use Impairment: Sufficient excursions from the instantaneous E. coli bacteria criterion (8 of 19 samples 42.1%) were recorded at DEQ's ambient water quality monitoring station (8-TRY004.98) at the Route 629 crossing to assess this stream segment as not supporting of the recreation use goal for the 2008 water quality assessment. The segment was previously listed for a fecal coliform bacteria

impairment, from 1998 through 2004. The E. coli bacteria impairment was first listed in 2006.

Several segments of Lake Anna downstream of Terrys Run are listed as not supporting the fish consumption use due to PCBs in fish tissue. The fish consumption use is categorized as impaired due to a Virginia Department of Health, Division of Health Hazards Control, PCB fish consumption advisory. The advisory, dated 6/15/04 and modified 12/13/04 and 08/31/07, limits consumption of bluegill sunfish, carp, channel catfish, largemouth bass, striped bass, white catfish, and white perch to no more than two meals per month. The advisory also bans the consumption of gizzard shad. The affected area includes the entirety of Lake Anna and its tributaries Contrary Creek, Gold Mine Creek, and Terrys Run. The impaired segments listed are:

- 1. Terrys Run/Lake Anna (VAN-F07L_TRY01A04) segment includes the Terrys Run arm of Lake Anna. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from four species (bluegill sunfish, carp, largemouth bass, white catfish) of fish sampled in 2003 and in tissue from five species (bluegill sunfish, carp, channel catfish, gizzard shad, white perch) of fish sampled in 2006 (7 total excursions) at monitoring station 8-TRY001.33.
- 2. Lake Anna/Pamunkey Creek (VAN-F07L_PMC01A04) segment includes the Pamunkey Creek arm of Lake Anna beginning at the confluence with the Terrys Run arm of the lake and continuing downstream until the confluence with the North Anna River at The Splits. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from two species of fish (channel catfish, striped bass) sampled in 2006 (four total excursions) at monitoring station 8-PMC002.13.
- 3. Lake Anna (VAN-F07L_NAR03A02) segment includes the upper portion North Anna River portion of Lake Anna, beginning at the boundary of F07, and continues downstream until the Route 208 bridge.
- 4. Lake Anna (VAN-F07L_NAR02A02) segment includes the middle portion of Lake Anna, beginning at the Route 208 bridge, and continues downstream until the northern end of the Route 690 bridge. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from one specie of fish (channel catfish) sampled in 2006 (three total excursions) at monitoring station 8-NAR044.68.
- 5. Lake Anna (VAN-F07L_NAR01A02) segment includes the lower portion of Lake Anna, beginning near the northern end of the Route 690 bridge, and continues downstream until the dam. Excursions above the water quality criterion based fish tissue value (TV) of 54 parts per billion (ppb) for polychlorinated biphenyls (PCBs) in fish tissue was recorded in tissue from three species of fish (carp, channel catfish, largemouth bass) sampled in 2003 (four total excursions) and in tissue from one specie of fish (carp) sampled in 2006 at monitoring station 8-NAR034.92.

- Has a TMDL been prepared?

Terrys Run (VAN-F07R_TRY01A00) Recreation Use Impairment: A bacteria TMDL for the Terrys Run watershed was developed and approved by the U.S. EPA on November 4, 2005. The SWCB approved the TMDL on September 27, 2006. The sources of bacteria requiring reductions are pet, livestock and wildlife waste delivered directly to the stream or via pastureland or forest, human contributions from straight pipes, failing septic systems, and leaking sanitary sewers, and biosolid application.

The PCB TMDL for Terrys Run and all the segments in Lake Anna has not yet been completed.

- Will the TMDL include the receiving stream?

While the unnamed tributary was not specifically included in the Terrys Run Bacteria TMDL, all upstream point source discharges were included. The unnamed tributary will not be included in the Lake Anna PCB TMDL.

- Is there a WLA for the discharge?

Bacteria TMDL - WLA for VA0060330 is 8.21E+09 CFU of E. coli per year.

- What is the schedule for the TMDL?

The Bacteria TMDL was completed and approved by EPA on 11/4/05.

The PCB TMDL for Terrys Run/Lake Anna segments (except for segment VAN-F07L_NAR01A02) are scheduled for due by 2018. Segment VAN-F07L_NAR01A02 is scheduled to be completed by 2014. Given the TMDL process, all of the Terrys Run/Lake Anna PCB impaired segments are expected to be completed by 2014.

4. Is there monitoring or other conditions that Planning/Assessment needs in the permit?

The latitude and longitude coordinates provided in this planning statement are estimated based upon descriptive information regarding the outfall location. Please have the permit writer or inspector verify the coordinates of the outfall during the next site visit.

6/24/2009 - 10:36 AM

Unionville MSTRANTI 6 3 09.xls - Freshwater WLAs

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Unionville Elementary School Facility Name:

Riga Run, UT

Receiving Stream:

Permit No.: VA0060330

Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information		Stream Flows		Mixing Information		Effluent Information	
Mean Hardness (as CaCO3) =	20 mg/L	1Q10 (Annual) =	0 MGD	Annual - 1Q10 Mix =	100 %	Mean Hardness (as CaCO3) =	50 mg/L
90% Temperature (Annual) =	23 deg C	7Q10 (Annual) =	0 MGD	- 7Q10 Mix =	, 100 %	90% Temp (Annual) =	21 deg C
90% Temperature (Wet season) =	O ded C	30Q10 (Annual) =	0 MGD	- 30Q10 Mix =	100 %	90% Temp (Wet season) =	O gab
90% Maximum pH =	7.1 SU	1Q10 (Wet season) =	0 MGD	Wet Season - 1Q10 Mix =	100 %	90% Maximum pH =	7.9 SU
10% Maximum oH =	ns	30Q10 (Wet season)	0 MGD	- 30Q10 Mix =	100 %	10% Maximum pH =	ns
Tier Designation (1 or 2) =	-	3005 =	0 MGD			Discharge Flow =	0.0047 MGD
Public Water Supply (PWS) Y/N? =	E	Harmonic Mean =	0 MGD				
Trout Present Y/N? =	c	Annual Average ≂	0 MGD				
Early Life Stages Present Y/N? =	>						

Control Cont	Commerce	parotosa		Water Ouality Criteria	tv Criteria			Vasteload	Wasteload Allocations		*	Intidegradati	Antidegradation Baseline		Ant	Antidegradation Allocations	Allocations			Most Limitir	Most Limiting Allocations	
Administration of the control of the				1	יין ייטיאינטי	L	1	ricord	15/VIQ/ HT		ı	Chronic	(SWd) HH	Ŧ	Acute	Chronic	H (PWS)	壬	Acute	Chronic	HH (PWS)	Ŧ
According to the control of the cont		Conc	Acute	CITIONIC	SW T) LIL	┙.	Jones	2 0 0	2	2 75+03			-				; 	,			na Eu	2.7E+03
According 6 1 1.0 E-01 1.84E+00 1.2 E-02 1.2 E-0	-	>	•	I	<u> </u>	20.17.7	! —	l	<u> </u>											I	q	7 8F+02
Amonina N (mgs)		0	:	ŀ	ВП	7.8E+02	1	;	В	7.8E+02	:	ŀ	ı		ı	ı	ı	ı	ı	I	<u>!</u>	
Authoricy Auth		0	ı	ı	ā	6.6E+00	1	ı	e.	6.6E+00	1	ŀ	1	1	:	,	1	ı	:	:	ē	6.6E+00
Ammones A (mg/l) 0 101E-01 1 58E-00 na		0	3.0E+00	ı	ē	1.4E-03	3.0E+00	1	na	1.4E-03	i	ı	ı	;	ı	·	1	1	3.0E+00	1	na E	1.4E-03
Adminish (1179) 1011-101 2 8 6 5 0 0		c			ē	1	1.0E+01	1.8E+00	na Br	ı	ŧ	1	ı	1	1	1	ı	1	1.0E+01	1.8E+00	na	ı
Infracelle © 3.4E+02 15E+02 na 1.1E+05 na 1.1E+05 na 1.1E+05 na 1.1E+05 na 1.1E+06 na 1.1E+07 na 1.					;				ç		;	1	1	1	ı	I	ı	ı	1.0E+01	2.8E+00	Ωa	1
Threached 0 3.4E+02 15E+02 na -1.	(world upin)	> 6	10.1		<u> </u>	1 15 105			2 2	1 1F+05	;	1		1	1	ı	1	1	:	1	Б	1.1E+05
Attractive C	Antiracene	> 0			<u> </u>	4 3 5 + 03		ı		4 3E+03	1	ı	1	1	;	ı	1	1	ı	1	na	4.3E+03
Infracence 0	Arearic	> 0	3.4F+02	1.5F+02	. e	1	3.4E+02	1.5E+02	E	ı	ŀ	ı	1	1	ı	ı	ı	ı	3.4E+02	1.5E+02	ᅙ	:
Intracene	2 20 20 20 20 20 20 20 20 20 20 20 20 20	, с	! ! !	: 1		1	1	ı	ē	1	I	1	ı	1	ı	;	ı	1	;	:	ВП	ı
Thyracere C C C C C C C C C	Benzene ^c	, ,	1	ı	e e	7.1E+02	ŀ	1	ē	7.1E+02	1	1	ŧ	ı	ı	1	ł	1	:	ı	ā	7.1E+02
Infracene © 0 na 4.9E-01	Benzidine	, 0	1	ı	na Eu	5.4E-03	ı	;	na	5.4E-03	ļ	ı	ı	1	1	1	1	1	:	:	па	5.4E-03
0	Benzo (a) anthracene		:	;	e G	4.9E-01	1	:	na	4.9E-01	ŀ	ì	ı	1	1	ı	1	ı	ı	:	E	4.9E-01
0	Benzo (b) fluoranthene	. 0	:		na	4.9E-01	1	:	па	4.9E-01	ı	ı	ł	1	1	ı	;	ı	1	;	E	4.9E-01
0	Benzo (k) fluoranthene			1	B	4.9E-01	ı	ı	ā	4.9E-01	ı	ı	ł	1	1	:	·	ı	ı	1	Ē	4.9E-01
lether 0	Benzo (a) pyrene ^c	· c	1	;	- E	4.9E-01	1	ı	na	4.9E-01	ı	1	ı	ı	1	1	ı	ı	:	ı	en en	4.9E-01
thalate 0 na 3.6E+03 na 3.7E+05 na 3.7E+05 na 3.6E+03	Bis2-Chloroethyl Ether	. 0	,	ı	e.	1.4E+01	ı	i	e E	1.4E+01	ı	ı	ı	1	ŧ	1	1	ı	ı	ŧ	E.	1.4E+01
thalate 0	Bis2-Chloroisopropyl Ether	0	1	ı	па	1.7E+05	1	1	na	1.7E+05	1	1	ı	1	;	ı	ı	1	ı	. 1	ē	1.7E+05
thalate 0 na 5.2E+03 na 5.2E+03 na 5.2E+03 na 5.2E+03	Bromoform ^c	0	1	1	na	3.6E+03	ı	ŀ	na	3.6E+03	ı	1	ı	;	ı	;	1	ı	;	ŧ	Ē	3.6E+03
0 1.8E+00 6.6E-01 na 1.8E+00 6.6E-01 na na 4.4E+01 na	Butylbenzylphthalate	0	ı	t	e.	5.2E+03	1	ı	na	5.2E+03	1	ı	ı	ŀ	:	i	i	1	ł	ı	Ē	5.2E+03
0 2.4E+00 4.3E-03 na 2.2E-02 2.4E+00 4.3E-03 na 2.2E-02	Cadmium	0	1.8E+00	6.6E-01	па	1	1.8E+00	6.6E-01	na	ı	ı	ı	1	1	ı	1	ı	1	1.8E+00	6.6E-01	п 8	1
0 2.4E+00 4.3E-03 na 2.2E-02 2.4E+00 4.3E-03 na 2.2E-02	Carbon Tetrachloride ^c	0	1	1	па	4.4E+01	ı	1	B	4.4E+01	1	ı	ı	1	1	ı	1	1	1	1	E	4.4E+01
0 8.6E+05 2.3E+05 na 8.6E+05 2.3E+05 na 8.6E+06 0 1.9E+01 1.1E+01 na	Chlordane ^c	0	2.4E+00	4.3E-03	na	2.2E-02	2.4E+00	4.3E-03	B	2.2E-02	ı	ı	ı		;	:	ı	ı	2.4E+00	4.3E-03	æ	2.2E-02
0 1.9E+01 1.1E+01 na 1.9E+01 1.1E+01 na 1.8E+01	Chloride	0	8.6E+05	2.3E+05	na	1	8.6E+05	2.3E+05	na	ı	1	ı	ı	ı	ı	:	ŀ	1	8.6E+05	2.3E+05	E	ı
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TRC	0	1.9E+01	1.1E+01	па	١	1.9E+01	1.1E+01	a	ı	ı	1	1	1	I	1	ı	1	1.9E+01	1.1E+01	<u>e</u>	1
	Chlorohenzene	0	;	1	ВП	2.1E+04	1	ì	na	2.1E+04	1	ı	ı	1		;	:		:	:	eu	2.1E+04

HH Acute 1 8.3E-02 2.2E+01 1.6E+01					0.4		*	Ally projector,	adoitane		Anti	degradation	Baseline	-	Antid	Antidegradation Allocations	locations		ž	Most Limiting Allocations	Allocations	
	Parameter	Background	4	vvater Quar	IIIy Criteria	1	i	Phronic HH	1	+		hronic HH	1		Acute	hronic HH	(PWS)	-		\vdash	H (PWS)	壬
	(ug/r unless noted)	2000	ACUTE	2110110	(Can 1) 1111	3 45+02	٦.		_	╀	1			,	,		,	,	,	;	e.	3.4E+02
well-this is a size of a s	Chloroform	> C	!	1	<u> </u>	2 95+04		ı		9E+04	1	1	ı	-	1	:	ı	;	,	1	E C	2.9E+04
		o c	ı ı	1 1	2	4.3E+03	1	:		3E+03	1	1	1		ŀ	ı	1	ı	:	ı	na	4.3E+03
	2-Chlorophenol	· c	!	ł	: E	4.0E+02	ı	;		0E+02	;	:	;	;	ı	1	1	1	ı	ı	na	4.0E+02
	Chlorovrifos	· c	8.3F-02	4.1E-02	e	1		1.1E-02		;	ı	:	,	1	1	1	;	1		4.1E-02	en e	1
	Chrominm III	• 0	3.2E+02	4.2E+01	E	;		1,2E+01	na	1	1	ı	1	1	1	,	1	1		4.2E+01	EL.	ı
	Chromita V		1 6 1 101	1 1E+01	: e	;		.1E+01	e C	1	1	1	1		;	1	1	,		1.1E+01	ā	1
	Chromium Total	, ,	1	; ; :	. g	1		1	БП	1	·	ł		1	1	ı	ı	1	1	ı	e.	ı
1 1 1 1 1 1 1 1 1 1	Chrysene		ı	;	ē	4.9E-01	1	1	na 4	9E-01	1	ı	1	ı	1	1	1	1	;	:	e E	4.9E-01
	Conner	. 0	7.0E+00	5.0E+00	e c	1		.0E+00			ı	ı	1	1	,	1	:	 I		5.0E+00	na n	ı
	opices C		2.2F+01	5 2E+00	ē	2.2E+05		;.2E+00		2E+05	1	:	,	i	1	1	1	1		5.2E+00	na a	2.2E+05
1 1 1 1 1 1 1 1 1 1	Cyallida DDD c	· c		1 1		8 4F-03		ı	na 8	4E-03	1	ı	;	1	1	1	1	1	ı	ı	e.	8.4E-03
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ODE	, c		1	: e	5.9E-03	1	ł		.9E-03	1	1	1		1	:	1	;	ı	1	E	5.9E-03
	o Luc	, c	1,11,00	1 0F-03		5 9F-03		1.0E-03	na 5	9E-03	. !	,	;	,	ì	ı	1	ı		1.0E-03	па	6.9E-03
	i de constant	o c		10 HO	2 2	: 1		1.0E-01	E	-	ı	ı	ı	- 1	1	1	ı	1		1.0E-01	na	
	Dernetori Dibenz(a h)anthracene ^c	, ,			2 2	4 9F-01		:		9E-01	;	1	1	1	;	;	,		:	ı	na	4.9E-01
one of the control of						1 25+04	1		ě	2F+04	1	:	,	-	;	;	1	ı	ŧ	:	na	1.2E+04
90 0 1 1 1 1 1 1 1 1	Dichloromethane	>	1	!	<u> </u>	1			!													
Substrates 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Methylene Chloride)	o	f	1	g	1.6E+04	ı	1		.6E+04		1	1	1	:	ı	;	;	ı	:	E.	1.6E+04
behavioure 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,2-Dichlorobenzene	0	;	ı	na	1.7E+04	ł	1	na 1	.7E+04	ı	,	:	1	ı	ŀ	ı	1	ı	ı	па	1.7E+04
obstruction 0 0	1 3-Dichlorobenzene	0	1	ı	п	2.6E+03	;	ı	na 2	:6E+03	ı	1	ı		;	1	1	1	ı	ı	n	2.6E+03
oversiditive () 0	1 4-Dichlorobenzene	0	1	1	na	2.6E+03	ı	:	na 2	:6E+03	1	ı	1	1	1	1	1	1	ı	1	ם	2.6E+03
	3 3-Dichlorobenzidine		1	1	ВП	7.7E-01	ì	:		.7E-01	;	1	ı	1	ı	;	:	1	1	:	52	7.7E-01
outhylers 0 1	Dichlorobromomethane ^c	0	1	ı	na	4.6E+02	ł	1		.6E+02	ı	,	•	1	;	ì	:	;	1	į	п	4.6E+02
Completions	1 2-Dichloroethane ^c	0	1	ı	na	9.9E+02	ı	1	na 6	:9E+02	ı	ŀ			ı	ı	ŀ	-	ı	ŀ	E.	9.9E+02
Control Cont	1 1-Dichloroethylene	. 0	ı	ı	B	1.7E+04	;	;	na 1	.7E+04	ł	1	ı	ı	1	1	1	1	ı	ŀ	ē	1.7E+04
Operation Operation <t< td=""><td>1 2-trans-dichloroethylene</td><td>0</td><td>1</td><td>ı</td><td>ā</td><td>1.4E+05</td><td>;</td><td>i</td><td></td><td>4E+05</td><td></td><td>ı</td><td>;</td><td>;</td><td>ı</td><td>1</td><td>:</td><td>;</td><td>ı</td><td>1</td><td>ē</td><td>1.4E+05</td></t<>	1 2-trans-dichloroethylene	0	1	ı	ā	1.4E+05	;	i		4E+05		ı	;	;	ı	1	:	;	ı	1	ē	1.4E+05
Optionary (2,4L2)	2 4-Dichlorophenol	. 0	. 1	:	Ē	7.9E+02	1	ı		.9E+02	ı	ı	1	:	ı	1	ı	1	ı		na	7.9E+02
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2,4-Dichlorophenoxy	•			ć		1	ı	ā		;	ı	,		ı	ı	ı	- 1	:	;	na	1
Operation Operation <t< td=""><td>acetic acid (2,4-D)</td><td>> 0</td><td>f</td><td>1</td><td><u> </u></td><td>3 9F+02</td><td>1</td><td>ı</td><td></td><td>9F+02</td><td>1</td><td>;</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>ı</td><td>na</td><td>3.9E+02</td></t<>	acetic acid (2,4-D)	> 0	f	1	<u> </u>	3 9F+02	1	ı		9F+02	1	;	1	1	1	1	1	1	1	ı	na	3.9E+02
language 0 2.4E-01 5 6E-02 na 1.2E-06 na 1.2E-06 na 1.2E-05 na 1.2E-06 na 1.2	1,2-Dichloropropare	> 0	l		<u> </u>	1 7F±03	;	ı		7E+03	1	1	;	ı	1	ı	1	1	ı	ı	8	1.7E+03
resyl phylatatie 0 1.2E-66	o cirpleio		2.4F.01	5.6F-02		1.4E-03		5.6E-02	E C	1.4E-03	1	1	1	1	1	ı	1	1	2.4E-01	5.6E-02	na	1.4E-03
0 na 5.9E+01 na 2.9E+03 na	Diethyl Phthalate		i		E	1.2E+05		1	na	.2E+05	ı	ţ	ı	1	1	ì	;	1	,	:	en E	1.2E+05
0 n.a 2.3E+03 </td <td>Di-2-Ethylhexyl Phthalate</td> <td>. 0</td> <td>١</td> <td>!</td> <td>БП</td> <td>5.9E+01</td> <td>1</td> <td>ı</td> <td>na }</td> <td>;.9E+01</td> <td>1</td> <td>1</td> <td>ı</td> <td>:</td> <td>ı</td> <td>1</td> <td>ı</td> <td>ı</td> <td>ì</td> <td>ı</td> <td>en en</td> <td>5.9E+01</td>	Di-2-Ethylhexyl Phthalate	. 0	١	!	БП	5.9E+01	1	ı	na }	;.9E+01	1	1	ı	:	ı	1	ı	ı	ì	ı	en en	5.9E+01
0	2.4-Dimethylphenol	0	ı	I	na	2.3E+03	ì	1	na .	3E+03	1	ı	ı	1	ì	;	;	1	ı	:	eu	2.3E+03
0 n. 1.2E+04 n. 1.2E+04 n. 1.2E+04 n. 1.2E+04 n. 1.2E+04 n. 1.2E+04 n. 1.4E+04 n. 1.4E+04 n. 1.4E+04 n. 1.4E+04 n. 1.4E+04 n. 1.4E+04 n.	Dimethyl Phthalate	0	1	ı	na	2.9E+06	ı	ı	na	9E+06	1	t	ı	1	ı	1	1	ŀ	:	1	E.	2.9E+06
0 -	Di-n-Butyl Phthalate	0	1	:	БП	1.2E+04	:	ı	na Eu	1.2E+04	1	1	1	1	ı	1	ı	1	:	ı	2	1.ZE+04
0	2,4 Dinitrophenol	0	1	1	na	1.4E+04	ı	,	B	1.4E+04	1	1	1	1	:	ı	:	1	ı	:	e C	1.45+04
0	2-Methyl-4,6-Dinitrophenol	0	:	:	B	7.65E+02	1	ł		7.7E+02	ı		:	1	:	1	ı	i	1	1	ē	7.75+02
0 2.2E-01 5.6E-02 na 2.4E+02 2.2E-01 5.6E-02 na 2.4E+02	2,4-Dinitrotoluene c	0	ł	1	B	9.1E+01	1	1		9.1E+01	I	ı	ı	1	I	1	1	;	ı	1	e C	9. IL
0 2.2E-01 5.6E-02 na 2.4E+02 2.2E-01 5.6E-02 na 2.4E+02	tetrachlorodibenzo-p-dioxin)																			:		g
henyllydrazine ^c 0 2.2E-01 5.6E-02 na 5.4E+00 - - na 5.4E+00 - <td>(bdd)</td> <td>0</td> <td>1</td> <td>l</td> <td>БП</td> <td>1.2E-06</td> <td>t</td> <td></td> <td></td> <td>na</td> <td>ŀ</td> <td>1</td> <td>1</td> <td>1</td> <td>ı</td> <td>ı</td> <td>1</td> <td>;</td> <td>ı</td> <td>:</td> <td><u> </u></td> <td>4 F</td>	(bdd)	0	1	l	БП	1.2E-06	t			na	ŀ	1	1	1	ı	ı	1	;	ı	:	<u> </u>	4 F
indosulfan 0 2.2E-01 5.6E-02 na 2.4E+02 na 2	1,2-Diphenylhydrazine ^c	0	1	1	па	5.4E+00		1	e	5.4E+00	ı	ı	ı	;	ı	ı	ŀ	ı	: 1	; ;	2 :	3.4E+00
doountfan 0 2.2E-01 5.6E-02 na 2.4E+02 na na 2.4E+02 na na 2.4E+02 na	Alpha-Endosuffan	0	2.2E-01	5.6E-02	ВП	2.4E+02		5.6E-02	eu	2.4E+02	;	ı	ı	1	1	ı	ł	l	2.2E-01	5.6E-02	E :	2.45.102
Iffan Sulfate 0 8.6E-02 3.6E-02 3.6E-02 3.6E-02 3.6E-02 3.6E-02 3.6E-02 Aldehyde 0 - - - - - - - - - -	Beta-Endosulfan	0	2.2E-01	5.6E-02	na	2.4E+02		5.6E-02		2.4E+02	ı	;	1	1	ı	:	:	ı	2.2E-01	5.6E-UZ	E .	2.45+02
0 8 8E-02 3.6E-02 na 8.1E-01 8.6E-02 3.6E-02 na 8.1E-01	Endosulfan Sulfate	0	1	1	na	2.4E+02		ı		2.4E+02	ı	ì	ı	1	ı	I	ı	1	; ;	: 14		4.4E+02
0 - na 81E-01 na 81E-01	Endrin	0	8.6E-02			8.1E-01		3.6E-02		8.1E-01	1	ı	1	ı	ı	ı	ı	1	8.6E-02	3.65-02	<u> </u>	8.1E-01
	Endrin Aldehyde	0			na	8.1E-01	-			8.1E-01			1									

				Charles Control			Montacional Allocations	locatione	-	4	Antidegradation Baseline	n Baseline		Anti	Antidegradation Allocations	Allocations		2	Most Limiting Allocations	Allocations	
	Background	4	water Que	Chronic Luc (D)(NC)	=	otilog	Chronic HH (PWS)	(PWS)	Ŧ	Acute	Chronic HH (PWS)	H (PWS)	Ŧ	Acute	Chronic HH (PWS)	H (PWS)	Ŧ	Acute	Chronic	HH (PWS)	Ŧ
(ug/i uniess noted)	COIIC	Acute		(CM -) 1111		2000		_1	2 05+04	1							,	,	1	BE	2.9E+04
Ethylbenzene	0	1	:	ē	2.9E+04	;	ı		2.3E+04	ı	ŀ	i				1		,	:	e	3.7E+02
Fluoranthene	0	1	1	na	3.7E+02	1	1	e C	3.7E+02	ı	ŀ		:	1	1	ı		1		! 1	1 4F±04
Fluorene	0	ı	ı	na	1.4E+04	1	1	<u>e</u>	1.4E+04	ı	l	1	1	ı	ł	1		:	:	E 1	
Foaming Agents	0	ı	ı	па	1	:	ı	na		1	1		1	:		ı	;	:	1	1	ı
Guthion	0	;	1.0E-02	. Bu	ı	1	1.0E-02	na	1	ı	ı	;	ı	ı	:	:	ŀ	1	1.0E-02	ē	1
Heptachlor ^c	0	5.2E-01	3.8E-03	БП	2.1E-03	5.2E-01	3.8E-03	na	2.1E-03	ı	ı	1	ı	ı	1	ı	1	5.2E-01	3.8E-03	ē	2.1E-03
Heptachlor Epoxide ^c	0	5.2E-01	3.8E-03	na	1.1E-03	5.2E-01	3.8E-03	Б	1.1E-03	1	1	ı	1	1	;	ı	;	5.2E-01	3.8E-03	na	1.1E-03
Hexachlorobenzene	0	ŀ	1	na	7.7E-03	ı	1	na	7.7E-03	ı	:	ı	;	ł	1	:	ı	ı	1	2	7.7E-03
Hexachlorobutadiene	0	I	ł	na	5.0E+02	1	ı	ВП	5.0E+02	ı	ı	ı	1	ı	1	ı	1	ı	ı	Pa B	5.0E+02
Hexachlorocyclohexane																		1	:	5	1.3F-01
Alpha-BHC ^c	0		1	ВП	1.3E-01	1	ı	5	1.3E-01	ı	:	:	1	ŀ	ı	ı	l	1	ı	<u> </u>	2
Hexachlorocyclohexane		1	ı	g	4.6E-01	1	1	ē	4.6E-01	1	I	1	1	1	1	ı	1	ı	i	Па	4.6E-01
Hexachlorocyclohexane	>			1	5																
Gamma-BHC ^c (Lindane)	0	9.5E-01	na	па	6.3E-01	9.5E-01	ı	Bu	6.3E-01	ı	:	ł	1	ı	1	ı	ı	9.5E-01	1	na L	6.3E-01
Hexachlorocyclopentadiene	c	,	;	na	1.7E+04	1	ı	па	1.7E+04	ŀ	ŀ	1	;	1	:	;	ł	:	:	ē	1.7E+04
Hexachlomethanec		;	:	60	8 9F+01	1	:	ē	8.9E+01	1	ı	1	1	1	1	,	1	ı	ı	2	8.9E+01
Lydrogen Sulfide	, ,	:	2 0F+00		1	1	2.0E+00	ē	ŀ	1	ı	1	;	ŀ	1	1	1	ı	2.0E+00	28	1
rydrogeri Sdinde	o c		20.3	1 6	4 9F-01	1	1	_ E	4.9E-01	ı	;	1		:	ı	ı	!	;	1	E.	4.9E-01
meno (1,2,0-cd) promi	> (ŀ	ı	2 6	, ,		;			ı	ı	ı	1	,	ı	ı	1	1	:	na	ı
lron	-	ı	I	<u> </u>				5 0	2 6F±04	1	ı	1	1	ł	1	ı	ı	ı	·	8	2.6E+04
Sopnorone	-	ı	1 1	<u>u</u>	2 .0F104	t	1 10	<u> </u>	1	1	;	;		ı	١	1	ı	:	0.0E+00	E.	:
Kepone	0	1	0.0=+00	Ē	1	1 1	יכ	<u> </u>	ı	ı		ı	-	1			ı	4.9E+01	5.6E+00	ē	,
Lead	0	4.9E+01	5.6E+00	ā		4.9E+01	Ç	œ œ	ı	ı		:	:	1					1 OF 0		ı
Malathion	0	ı	1.0E-01	ē	ŧ	١	1.0E-01	na	1	;	1	ı	ı	ı	ı	;	ı	ı			: 1
Manganese	0	;	1	пa	1	ı		e.	ł	ı	1	ı	:	1	:	1	;	1 ;	: ;	!	
Mercury	o	1.4E+00	7.7E-01	na	5.1E-02	1.4E+00	7.7E-01	na B	5.1E-02	I	ı	ì	ı	1	ŀ	ı	1	1.4E+00	7.7E-01	ē	5.1E-02
Methyl Bromide	0	;	1	na	4.0E+03	ł	ł	na	4.0E+03	ţ	ı	ı	ı	ı	ı	ı	1	ı	ı	ē	4.0E+03
Methoxychlor	0	1	3.0E-02	na	1	1	3.0E-02	na	;	ı	1	1	,	1	1	ı	1		3.0E-02	E.	
Mirex	0	i	0.0E+00	na	1	;	0.0E+00	na	ı	ı		ı	ŀ	1	:	;	ı	ı	0.0E+00	2	:
Monochlorobenzene	0	ŀ	١	na	2.1E+04	1	ı	na	2.1E+04	t	:	ı	ŀ	ı	ı	:	1	:	ı	2	2.1E+04
Nickel		1.0E+02	1.1E+01	Ba	4.6E+03	1.0E+02	1.1E+01	BE	4.6E+03	ı	ı	ı	ı	ı	ŀ	ı	ı	1.0E+02	1.1E+01	E .	4.6E+03
(Nitrate (as N)	0	ı	1	na	1	ı	ı	ē	ı	ł	ı	1	ı	;	ı	ı	:	1	ı	ē	1
Nitrobenzene	0	ł	ı	na	1.9E+03	١	1	Ba	1.9E+03	ı	ì	:	;	;	ı		1	:	:	ē	1.9E+03
N-Nitrosodimethylamine ^c	0	ł	ı	БП	8.1E+01	1	1	na Br	8.1E+01	1	1	ı	1	1	ı	ı	1	ı	1	Ē	8.1E+01
N-Nitrosodiphenylamine ^C	0	Į	ı	na	1.6E+02	1	1	ā	1.6E+02	ı	ı	:	ŀ	l	:		;	:	1	ם	1.6E+02
N-Nitrosodi-n-propylamine	0	1	1	na	1.4E+01	1	ı	Б	1.4E+01	ı	ı	1	1	1	ı	1	1	ı	:	e E	1.4E+01
Parathion	0	6.5E-02	1.3E-02	na	1	6.5E-02	1.3E-02	na	ı	ı	ı	ı	:	ı	1	ı	1	6.5E-02	1.3E-02	Ē	ı
PCB-1016	0	ı	1.4E-02	na	ı	1	1.4E-02	e	ı	;	ı	ı	ı	ı	1	1	1	1	1.4E-02	e E	ı
PCB-1221	0	ł	1.4E-02	na	ı	1	1.4E-02	B	1	ı	ı	ı	ı	ı	ı	ı	1	:	1.4E-02	B	ŀ
PCB-1232	0	ı	1.4E-02	na	ı	,	1.4E-02	па	;	1	ı	1	ı	ı	ı	1	1	ı	1.4E-02	E	ŀ
PCB-1242	0	1	1.4E-02	вп	1	1	1.4E-02	na	ı	;	ı	1		:	1	1	1	1	1.4E-02	eu	ŧ
PCB-1248	0	ı	1.4E-02	na	1	ı	1.4E-02	na	ı	ı	1	ı	ı	ı	ı	ı	1	:	1.4E-02	ğ	!
PCB-1254	0	ı	1.4E-02	B	1	ı	1.4E-02	па	ı	;	1	1	1	1	ı	ı	ı	:	1.4E-02	e.	:
PCB-1260	0	,	1.4E-02	В	1	1	1.4E-02	ВП	ı	ì	ı	1	ı	ı	1	1		1	1.4E-02	na	1
PCB Total ^c	0	1	1	na	1.7E-03	1	1	na	1.7E-03		:		:			:	:	:	1	en e	1.7E-03
						İ	Ì														

Unionville MSTRANTI 6 3 09.xls - Freshwater WLAs

Language Acute Chronic Information IHH (PWS)	2 8 4 5 0 0 4 4	Acute Chronic 7.7E-03 5.9E-03	Chronic HH (PWS)	Ŧ	Acute	Chronic HH (PWS)	L			Ŧ	Acute	-	_
Interest noted) Lonc. Acute Chronic Intraversy Acute Chronic Intraversy Acute Chronic Intraversy Interests (pCi/li			3 00				TH (SX	Acute	Chronic HH (PWS)			Chronic HH (PWS)	WS) HH
chlorophenol c 0 7,7E-03 5,9E-03 na na nuclides (pC,l/l 0					1	2000]	O. D.			1		0 35401
1				8.2E+01	1	1	ı	:	1	:	,		
a nuclides (pCi/l the tat/Photon) 10 11 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15			na	4.6E+06	1	1	ı	ı	;	1	:	E	
rucides (pCifl 0 na na sa Alpha Activity 0 na na nand Photon Activity 0 na na nand Photon Activity 0 na nand Photon Activity 0 na			па	1.1E+04	;	1	ı	ı	1	1	;	In	a 1.1E+04
th Beta/Photon) ss Alpha Activity on and Photon Activity on and and Photon Activity on and and Photon Activity on and and Activity on and and and and and and and and and an	···	1	ä		1	1	1	I	1	1	1	1	E .
s Alpha Activity and Photon Activity fyr) m nm um um 0 2.0E+01 0 1.0E+00 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1.0E+000 1			1	;							1		1.5E+01
Intium-90		1	na Bu	1.5E+01	I	1	1	1	;	1	I	1	
num		:	ā	4.0E+00	ı	1	1	ı	:	:	1	:	na 4.0E+00
Imm 0		1	БП	8.0E+00	ı	1	ŀ	i	1	ı	:	:	a 8.0E+00
a 2.0E+01 5.0E+00 na 1.0E+00 na 1		1	ā	2.0E+04	ŀ	!	1	ŀ	;	1	t	-	na 2.0E+04
2-Yetrachloroethane ^C 0 1.0E+00 na ha hissolved solids 0 na ha hissolved solids 0 na ha		2.0E+01 5.0E+00	o na	1.1E+04	ŀ	1	1	ı	1	ı	2.0E+01	5.0E+00 n	na 1.1E+04
2-Tetrachloroethane ^C 0 na ihloroethylene ^C 0 na im 0 na isasolved solids 0 na		1.0E+00	na	1	I	1	1	1	1	1	1.0E+00	-	1
		,	E	,	;	;	1	ı	:	ı	1		na .
		1	2	1 1F+02	ı	;		ı	1	ı	1	1	a 1.1E+02
oroettylene*		1	<u> </u>	1 0				,	1	١	ŀ	1	a 8.9E+01
0 na na solved solids 0 na		! !	ē	9.90	1	:	ı	ı					6.35+00
solved solids 0 na	6.3E+00	1	na	6.3E+00	ı	:	ı	:	:	:	!	1	
na na	2.0E+05	1	E L	2.0E+05	ı	1	1	ı	1	1	1		na 2.0E+U5
		1	na	;	1	1	1	ŀ	1	:	1		na
Toxaphene ^c 0 7.3E-01 2.0E-04 na 7.5E-03	7.5E-03 7.3	7.3E-01 2.0E-04	4 na	7.5E-03	,	:	ı	1	;	:	7.3E-01	2.0E-04	na 7.5E-03
0 4.6E-01 6.3E-02 na		4.6E-01 6.3E-02	2 na	1	i		1	ł	1	i	4.6E-01	6.3E-02 r	
olorobenzene 0 na	9.4E+02	:	ВП	9.4E+02	ı	:	1	ı	1	1	;	-	ia 9.4E+02
- O	4.2E+02	;	na	4.2E+02	ı	t	ı	ŀ	1	I	ı	-	ia 4.2E+02
na	8.1E+02	:	B	8.1E+02	;	;	•	1	;	ı	1		la 8.1E+02
olo 0	6.5E+01	1	ā	6.5E+01	ı	:	i	ı	:	I	;		na 6.5E+01
2-(2,4,5-Trichlorophenoxy) 0 - na	.	1	B	ı	ı	:	1	ı	!	ı	:	:	na '
- u	6.1E+01	:	БП	6.1E+01	1	1	1	1	1	1	١		na 6.1E+01
0 6 5F+01 6 6F+01 na	6.9E+04 6.5	6.5E+01 6.6E+01	en na	6.9E+04	1		1	1	-		6.5E+01	6.6E+01	na 6.9E+04

- All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information.
 Antidegradation WLAs are based upon a complete mix.
 - 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens, Harmonic Mean for Carcinogens, and Annual Average for Dioxin. Mixing ratios may be substituted for stream flows where appropriate.

Metal	Target Value (SSTV)	Target Value (SSTV) Note: do not use QL's lower than the
Antimony	4.3E+03	minimum QL's provided in agency
Arsenic	9.0E+01	guidance
Barium	na	
Cadmium	3.9E-01	
Chromium III	2.5E+01	
Chromium VI	6.4E+00	
Copper	2.8E+00	
Iron	na	
Lead	3.4E+00	
Manganese	па	
Mercury	5.1E-02	
Nickel	6.8E+00	
Selenium	3.0E+00	
Silver	4.2E-01	
Zinc	2.6E+01	

```
Analysis of the UNIONVI & ELEMENTARY SCHOOL STP e: uent data for AMMONIA
Averaging period for standard = 30 days
The statistics for AMMONIA are:
   Number of values
   Quantification level
                            = .2
   Number < quantification =
                               0
                             = 10
   Expected value
                             = 36.00001
   Variance
                                . 6
                             ===
   c.v.
                             = 24.33418
   97th percentile
                             = Reasonable potential assumptions - Type 2 data
   Statistics used
The WLAs for AMMONIA are:
                       = 6.64
   Acute WLA
   Chronic WLA
   Human Health WLA
Limits are based on acute toxicity and 1 samples/month, 1 samples/week
   Maximum daily limit = 6.64
Average weekly limit = 6.639999
Average monthly limit = 6.639999
     Note: The maximum daily limit applies to industrial dischargers
            The average weekly limit applies to POTWs
            The average monthly limit applies to both.
 The Data are
```

10

Criteria and WLA Calculations for Ammonia based upon freshwater criteria (Nontidal Only)

Date: 03/24/04

Facility: Unionville Elementary School Permit Number: VA0060330

Comments: Ammonia as N

								į	MGD	MGD	:= Antideg)
S.U.	C			MGD	MGD	MGD	MGD	MGD	Ϋ́	Ϋ́	(1=No Antideg; 2= Antideg)
7.90	21:00	N	Z	0.000	0.000	00'0	000	0.0047	100 00%	100.00%	
1‡	ıı	н	=	н	31	13	11	"	H	11	н
Hd	Temperature	Trout Present (Y or N)	Early Life Stages Present (Y or N)	1010	7Q10	30010	Harmonic Mean	Design Flow	Percentage of Acute Mix (1010)	Percentage of Chronic Mix (30Q10)	Water Body Tier

Chronic - Early Life Stages Present

Acute -	Acute - Trout Present	resent		Chronic Early Life Stages Present	Life St	ges Present	
Calculated Ammonia Criteria Calculated Ammonia Criteria	11 11	(0.275 / 6.77	$(0.275/1+10^{(7.20+01)})+(39/1+10^{(0+7.204)})$ 6.77	Calculated Ammonia Criteria MIN	11 11	((0.0577 / 1 + $10^{(7.587.0^{11})}$) + (2.487 / 1 + $10^{(044.7.691)}$)) X 2.85 or 1.45 x 10(0.028(25-temp), which ever is less	×
Acute	Acute - Trout Absent	Absent		Calculated MIN	н н	1.88 Calculated value is less than 2.85	
Calculated Ammonia Criteria Calculated Ammonia Criteria	11 11	(0.411 /	$(0.411/1+10^{(7.204\pm1)})+(58.4/1+10^{(94.7204)})$ 10.13	Calculated Ammonia Criteria	ı K		
				Chronic - Early Life Stages Abscent	v Life St	ges Abscent	
Total Acute Arnmonia Criteria	il	10.13	mg/) as N	Calculated Ammonia Criteria MAX	11 11	((0.0577 / 1 + $10^{(7.656+04)}$)+ (2.487 / 1+ $10^{(0H-7.659)}$)) X (Temp. in C or 7, whichever is greater	×
				MAX Comparison	н	21.00 Temperature value enter will be used	
				Calculated Ammonia Criteria	u	1.84	
			L	Total Chronic Ammonia Criteria	II	1.84 mg/l as N	

					Antided	888				Antideg	****
		Acute	Acute	Acute	Acute	= ALSS	_	Chronic	Chronic	Chronic	SSTV=
	Instream	Criteria	Baseline	WLA		0.4 X aWLA	Criteria	Baseline	WLA	WLA	0.6 X CWLA
Parameters	Background	(ma/l)	(ma/l)	(mg/l)		(mg/l)		(mg/l)	(mg/l)	(l/gm)	(mg/l)
Ammonia	2	10.13	Ϋ́	10.13	¥	4.05	1.84	NA	1.84	Ā	1,11

- Notes:

 1) ND = No Data available, and therefore the background concentrations are assumed to be Zero.

 2) Acute Criteria = One-hour average concentration of total armonia nitrogen in freshwater shall not exceed, more than once every three years on the average concentration of total armonia nitrogen where early life stages of fish are present in freshwater shall not exceed, more than once every three years on the average concentration of total armonia nitrogen where early life stages of fish are present in freshwater shall not exceed, more than once every three years on the average concentration of total armonia nitrogen where early life stages of fish are present in freshwater shall not exceed, more than once every three years on the average concentration of total armonia nitrogen where early life stages of fish are present in freshwater shall not exceed, more than once every three years.

```
6/3/2009 6:26:07 PM
Facility = Unionville Elementary School
Chemical = Ammonia
Chronic averaging period = 30
WLAa = 10.1
WLAc
         = .2
Q.L.
# samples/mo. = 1
\# samples/wk. = 1
Summary of Statistics:
# observations = 1
Expected Value = 9
Variance = 29.16
                  = 0.6
C.V.
97th percentile daily values = 21.9007
97th percentile 4 day average = 14.9741
97th percentile 30 day average= 10.8544
                = 0
# < Q.L.
Model used = BPJ Assumptions, type 2 data
A limit is needed based on Acute Toxicity
Maximum Daily Limit = 10.1
Average Weekly limit = 10.1
Average Monthly LImit = 10.1
```

9

The data are:

Riga Run at Route 650 (8-RIG004.52) Stream Hardness, Temperature and pH data

			Temperature	,	
Collection date	Hardness	Temperature	sorted	рН	pH Sorted
7/22/1999	22.1	23	23		
9/22/1999	18.2	22.9	22.9	-	
11/22/1999	13.7	22.68	22.68	1	
1/19/2000	15.1	20.22	20.22		
2/23/2000	19	20.18	20.18	7.24	7.24
3/8/2000	15	17.9	17.9	7.1	7.1
4/18/2000	26	14.9	14.9	7.04	7.04
5/25/2000	23	11.4	11.4	6.73	6.73
6/27/2000	19.2	11	11	6.7	6.7
7/25/2000	36	9.4	9.4	6.6	6.6
8/24/2000	13.9	4.4	4.4	6.3	6.3
7/20/2006		0.5	0.5	6.1	6.1

/ Can				
' Matara	TITIM	NIA IN Q2	Fact Morth Zon	Δ
> Meters	UIIVI	INADOS	East North Zon	Ċ.

Meters UTM NAD27 East North Zone

Base Map source: USGS 1:100,000 topographic maps (see terraserver-usa.com for details)

Map projection is UTM Zone 18 NAD 1983 with left 236988 and top 4243840. Pixel size is 16 meters Coordinates displayed are Degrees, Minutes, Seconds North and West. Map is currently displayed as 60 columns by 600 rows for a total of 360000 pixles. The map display represents 9600 meters east to wes 9600 meters north to south for a total of 92.1 square kilometers. The map display represents 31501 fee to west by 31501 feet north to south for a total of 35.5 square miles.

A UTM Zone change occurs within the image. The left-hand side of the image is a pseudo projection fr UTM Zone 17 into UTM Zone 18 resulting in reduced spatial accuracy within the portion of the image occurring in UTM Zone 17.

Black and white aerial photography aquired near 1990 and topographic maps are from the United State Department of the Interior, United States Geological Survey.

Shaded topographic maps are from TOPO! ©2006 National Geographic

http://www.nationa.geographic.com/topo

Color aerial photography aquired 2002 is from Virginia Base Mapping Program, Virginia Geographic Information Network

All other map products are from the Commonwealth of Virginia Department of Game and Inland Fishe

map assembled 2009-06-03 17:00:30 (qa/qc April 2, 2009 16:35 - tn=241882 dist=3218 I)

| <u>DGIF</u> | <u>Credits</u> | <u>Disclaimer</u> | Contact <u>shirl.dressler@dgif.virginia.gov</u> | Please view our <u>privacy policy</u> | © Copyright: 1998-2009 Commonwealth of Virginia Department of Game and Inland Fisheries

Virginia Department of Game and Inland Fisheries

6/3/2009 4:58:38 PM

Fish and Wildlife Information Service

VaFWIS Initial Project Assessment Report Compiled on

Help

6/3/2009, 4:58:38 PM

Known or likely to occur within a 2 mile radius of 38,15,43.9 77,57,04.9 in 137 Orange County, VA

349 Known or Likely Species ordered by Status Concern for Conservation

(displaying first 25) (25 species with Status* or Tier I**)

BOVA Code	Status*	Tier**	Common Name	Scientific Name	Confirmed	Database(s)
040129	ST	I	Sandpiper, upland	Bartramia longicauda		BOVA
040293	ST	I	Shrike, loggerhead	Lanius ludovicianus		BOVA
040093	FSST	II	Eagle, bald	Haliaeetus leucocephalus		BOVA
040292	ST		Shrike, migrant loggerhead	Lanius ludovicianus migrans		BOVA
100248	FS	I	Fritillary, regal	Speyeria idalia idalia		BOVA
060029	FSSS	III	Lance, yellow	Elliptio lanceolata		BOVA
010077	SS	I	Shiner, bridle	Notropis bifrenatus	·	BOVA
040266	SS	II	Wren, winter	Troglodytes troglodytes		BOVA
030063	CC	III	Turtle, spotted	Clemmys guttata		BOVA
040094	SS	III	Harrier, northern	Circus cyaneus		BOVA
040204	SS	III	Owl, barn	Tyto alba pratincola	Yes	Collections,BBA,BOVA
030012	СС	IV	Rattlesnake, timber	Crotalus horridus		BOVA
040264	SS	IV	Creeper, brown	Certhia americana		BOVA
040364	SS		Dickcissel	Spiza americana		BOVA
040032	SS		Egret, great	Ardea alba egretta		BOVA
040366	SS		Finch, purple	Carpodacus purpureus		BOVA
040285	SS		Kinglet, golden- crowned	Regulus satrapa		BOVA
040112	SS		Moorhen, common	Gallinula chloropus cachinnans	:	BOVA
			Nuthatch, red-			

040262	ss		breasted	Sitta canadensis
040189	SS		Tern, Caspian	Sterna caspia
040278	SS		Thrush, hermit	Catharus guttatus
040314	SS		Warbler, magnolia	Dendroica magnolia
050045	SS		Otter, northern river	Lontra canadensis lataxina
040225		I	Sapsucker, yellow-bellied	Sphyrapicus varius
040319		I	Warbler, black- throated green	Dendroica virens

To view All 349 species View 349

Anadromous Fish Use Streams

N/A

Colonial Water Bird Survey

N/A

Threatened and Endangered Waters

N/A

Cold Water Stream Survey (Trout Streams) Managed Trout Species

N/A

Public Holdings:

N/A

audit no. 241882 6/3/2009 4:58:38 PM Virginia Fish and Wildlife Information Service © 1998-2008 Commonwealth of Virginia Department of Game and Inland Fisheries

^{*} FE=Federal Endangered; FT=Federal Threatened; SE=State Endangered; ST=State Threatened; FP=Federal Proposed; FC=Federal Candidate; FS=Federal Species of Concern; SC=State Candidate; CC=Collection Concern; SS=State Special Concern

^{**} I=VA Wildlife Action Plan - Tier I - Critical Conservation Need; II=VA Wildlife Action Plan - Tier II - Very High Conservation Need; III=VA Wildlife Action Plan - Tier III - High Conservation Need; IV=VA Wildlife Action Plan - Tier IV - Moderate Conservation Need

VA0060330 Unionville Elementary School

DMR data for December 2003 through April 2009

2		*******		XXXXXXXX	*	******			10000000	200		,		
					•	******		%L MGD	0	.0040	0.0047	.0021	4/30/06 001 FLOW	4/1/06
						****		MED MGD		.0033	0.0047	.0020	5/31/06 001 FLOW	5/1/06
—										 		.0019	6/30/06 001 FLOW	6/1/06
4								NZ MGD		T	0.0047		7/31/06 001 FLOW	7/1/06
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						******		AL MGD		.0018	1 1 2 3	.0012	8/31/06 001 FLOW	8/1/06
						******				.0038	0.0047	.0016	9/30/06 001 FLOW	9/1/06
<u>.</u>										.0095	0.0047	.0029	10/31/06 001 FLOW	10/1/06
										†		.0029	11/30/06 001 FLOW	11/1/06
										T.	100000	.0017	12/31/06 001 FLOW	12/1/06
						****		AF WGD		.0028		.0019	1/31/07 001 FLOW	1/1/07
₹ 3	***************************************									1	0.0047	.0020	2/28/07 001 FLOW	2/1/07
	-					***				T		.0021	3/31/07 001 FLOW	3/1/07
						33		NGD MGD		Г		.0025	4/30/07 001 FLOW	4/1/07
┷								NZ MGD		1	1	.0019	5/31/07 001 FLOW	5/1/07
							***************************************			T		.0014	6/30/07 001 FLOW	6/1/07
┈—										.0020	0.0047	.0012	7/31/07 001 FLOW	7/1/07
								NL MGD			XXXXX	.0023	8/31/07 001 FLOW	8/1/07
						****		AL MGD		1	1	.0023	9/30/07 001 FLOW	9/1/07
-↓								NL MGD		.0028		.0021	10/31/07 001 FLOW	10/1/07
4						******		NL MGD		.0033	0.0047	.0020	11/30/07 001 FLOW	11/1/07
				******		***************************************		NL MGD		0.0035	0.0047	0.0019	12/31/07 001 FLOW	12/1/07
4		******		******				NL MGD		0.0045	0.0047	0.0021	1/31/08 001 FLOW	1/1/08
1		*******		******		*****		NL MGD		0.0023	0.0047	0.0011	8	2/1/08
┸		*******		******				NL MGD		0.0028	0.0047	0.0016	3/31/08 001 FLOW	3/1/08
		*******		****		*		NL MGD		0.0033	0.0047	0.0017	4/30/08 001 FLOW	4/1/08
1				*****		****		NL MGD		0.0083	0.0047	0.0022	5/31/08 001 FLOW	5/1/08
		******		****		****		NL MGD		0.0018	0.0047	0.0005	6/30/08 001 FLOW	6/1/08
ᆚ		***		****		1		NL MGD		0.0008	0.0047	0.0004	7/31/08 001 FLOW	7/1/08
						******		NT Web		0.0040	0.0047	0.0021	8/31/08 001 FLOW	8/1/08
				***		*****		AT WED		0.0043	0.0047	0.0022	8	
		****		1		1		NL MGD		0.0038	0.0047	0.0019	10/31/08 001 FLOW	
1		******				*****		AL MGD		0.0030	0.0047	0.0016	11/30/08 001 FLOW	11/1/08
.1	 	****		********		*****		NL MGD		0.0045	0.0047	0.0016	12/31/08 001 FLOW	12/1/08
3		****				*****		NL MGD		0.0040	0.0047	0.0020	1/31/09 001 FLOW	1/1/09
1	0	***		1		***		AT Web		0.0030	0.0047	0.0016	2/28/09 001 FLOW	2/1/09
3	-	******				******		NL MGD		0.0035	0.0047	0.0016	3/31/09 001 FLOW	3/1/09
3	0	******				*******		AT MOD		0.0035	0.0047	0.0018	4/30/09 001 FLOW	4/1/09
pe1-	Unit Ex		MAX	Lim Avg	AVG	Lim Min	MIN	ax Ofy	Lim Max	MAX	Lim Avg	AVG	ال Parameter Description	Monitor Start Date
			<u> </u>						7					

					9	6.0	6.6	****		*******		3/31/08 002 PH	3/1/08	اد
3	 	9,0 30	8.0		0		6.6	******		******		4/30/08 002 PH	4/1/08 4/	4/
	1	9 0	0.6				6./					5/31/08 002 PH	5/1/08 5/	5)
<u> </u>	- -	0.0 SU	0 :	****			2 2					002	6/1/08 6/	6
≤ A		9 0 SU	7.8	*******	3		7	*****				200	// 80/1//	
Z A	0	9.0 SU	8.6	******	0	5	8.5	*******		***	-	3 8	T	7 6
M A	0	9.0 S∪	7.4	*****	0	5 6.0	6.5	*******		*****		8	Т	20
M A	0	9.0 SU	8.1	*******	0	6.0	6.8	*****		******		9/30/08 002 PH	Т	9/
: ≤ · >	, c	9.0	6.7		0	7 6.0	6.7	******		*******		10/31/08 002 PH	10/1/08 10/	10/
3		9,0	0.1		9		7.0	*******		********		11/30/08 002 PH	11/1/08 11/	11/
3 3		9.0	2 .0				5.8					12/31/08 002 PH	12/1/08 12/	12/
M E)	o o o	7.1	****			2.0					1/31/09 002 PH	1/1/09 1/	1
S A		USI C O	7,4	*****			1 9					2/28/09 002 PH	2/1/09 2/	2/
≤ >	0	9.0 SU	7.8	******	9		6 5	******		****			Т	٧
Z A	0	9.0 SU	8.0	*******	0	7 6.0	6.7	*****		*******		3 3	T	2/ :
M A	0	9.0 SU	8.1	***	0	6.0	6.2	******		*******	1			4/
3	1			*****	*	*******		7	.0048	0.0047	.0026	12/31/03 001 FLOW	12/1/03 12/	12):
.						*****		<u> </u>	.0035	0.0047	.0017	1/31/04 001 FLOW	1/1/04 1/	1;
¥			G-5-1					2€	.0033	0.0047	.0018	2/29/04 001 FLOW	2/1/04 2/3	2/:
S		*****	*				***************************************	187	T	1	.0018	3/31/04 001 FLOW	3/1/04 3/3	ų.
S I	0	******		*****	*	******			1		200.00		T	4/
≤ H	0	*****	*	****	*	******		≥	0033		0000	SOLVE DOM	T	
≤ H	0	*****		*****	*	*******		2	_		.0020	3	T	5/4
S H		****	•		*	*******		74	.0025	0.0047	.0012	6/30/04 001 FLOW	T	6/1
≤	0	****	*		*	*******		¥	.0008	0.0047	.0006	7/31/04 001 FLOW		7/1
<u> </u>	1					*****		NΕ	.0013	0.0047	.0010	8/31/04 001 FLOW	8/1/04 8/3	8/1
≥								ž	.0030	0.0047	.0016	9/30/04 001 FLOW	9/1/04 9/3	9/1
3						***************************************		ř	.0025	0.0047	.0021	10/31/04 001 FLOW	10/1/04 10/3	10/1
		****	*						.010	111000000	.0021	11/30/04 001 FLOW	11/1/04 11/3	11/1
M :		****	*	***				F	.0020		eron.	12/31/04 001 FLOW	12/1/04 12/3	12/1
Z >	L	****	*	*****	*			Î	.0020		.0010	8	Γ	15
≤ A	0	****	*	*******	*		***************************************	3	0003		201	8 8	T	- 12
Z A	0	*****	*	* * * * * * * *	*			8	.0025		017	3	T	2 9
MA	0	********	*	********	•	*******		2	.003	0.0047	.0018		Т	3/1
≥	1	***			*	*******		2	.0040	0.0047	.0021	4/30/05 001 FLOW	Т	4/1
_ ≤		******	*	*******	*	******		NL	.0045	0.0047	.0019	5/31/05 001 FLOW	T	5/1
_ <u>≤</u>	c	****			*	****		ALL.	.0033	0.0047	.0016	6/30/05 001 FLOW	Т	6/1
	1			2000	*	****		NL.	.0005	0.0047	.0003	7/31/05 001 FLOW	П	7/1
≥					*	***		NL.	.0033	0.0047	.0016	8/31/05 001 FLOW	T	8/1
_ ≥					*	*****		NL.	.004	0.0047	.0021	9/30/05 001 FLOW		9/1
: 3 · >	ļ-		1		 	***		<u>₹</u>	.0030	0.0047	.0023	10/31/05 001 FLOW		10/1/05
: <u>3</u>						****	-	2	.003	0.0047	.0017	11/30/05 001 FLOW		11/1/05
:	4							¥	.0028	0.0047	.0019	12/31/05 001 FLOW		12/1/05
						*********		×	.003	0.0047	.0017	1/31/06 001 FLOW	1/1/06 1/3	11,
						*****		7	.0035	0.0047	.0027	2/28/06 001 FLOW	2/1/06 2/2	2/1,
		Lim Wax Unit		Lim Avg	AVG			Lim Max Unit	MAX	Lim Avg	AVG	ध्रं Parameter Description #	ate	Start Date
	()	W00000000	CONC	•	CONC		CONC	******	20000		2000	1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年では、1000年で	-	

3	-	3 .0	7.3		6.0		6.5	****		*****		2 PH	10/31/04 002 PH		10/1/04
			7.4		6.0		6.5	*******		******		2 PH	04 002	11/30/04	11/1/04
3			1.0		6.0		6.6	******		*****		2 PH	04 002	12/31/04	12/1/04
Δ :		00	70	*****	2 0		2.4					2 PH	05 002	1/31/05	1/1/05
Z A	0	0.0	80	*******	<u> </u>			****			***************************************	PH		Π	2/1/05
≤ A	0	9.0	7.8	******	60		6.6	******		****				Т	0/1/03
Z A	0	9.0	8.0	******	0	6.0	6.2	*****		******		DH :	3	Т	2/4/04
M A		9.0	7.6	*******	0	7 6.0	6.7	*******		******		PH	05 002	T	4/1/05
M		9.0	7.9	*******	0	0.0	7.0	*******	7	******		PH PH	05 002	Т	5/1/05
M A	0	9.0	7.4	*	0	6.0	6.9	******	7	*******		9	05 002	Т	6/1/05
_ ≤	1	9.0	7.5	******	0	6.0	7.0	********		*******		PH PH	05 002	Т	7/1/05
		9.0	7.5	******	0		6.9	*******		******		PH	05 002	П	8/1/05
. ≥		9.0	7.4		0		6.4	********		******		PH	05 002		9/1/05
3	c	9.0	7.2		0	6.0	6.6	*******		*******		PH	10/31/05 002 PH		10/1/05
		9.0	7.2	******	0		6.6	****		*******		PH	11/30/05 002		11/1/05
:		9.0	7.2		0		6.7	******		*******		PH	05 002	12/31/05	12/1/05
S		9.0	2.7		9		6.3	******		*****		PH	36 002	1/31/06	1/1/06
S S		9 9	7.7		15		6.3	***************************************		******		P	2/28/06 002	-	2/1/06
3		0 9	7 .) S		0.3			*********		PH	3/31/06 002		3/1/06
M		0.0	7 3				0.0					PH	4/30/06 002		4/1/06
S :		US O D	7 3				0.0					PH)6 002 PH	Π	5/1/06
		O S C O	7 2	*****			0.0					FI	6/30/06 002		6/1/06
⊠ A		US () P	7.4				0.0	****					002		7/1/06
≤ >		US () @		*****	3 6			***				Ī)6 002 PH		8/1/06
S >		9 0 SU	7.3	******	3		66:	****		*****		ב	200	Τ	9/1/06
≤ >	0	9.0 SU	7.8	*****	9		6.7	****		****	***************************************		0/3//00 002	T	01/1/06
S >	0	9.0 SU	7.6	*****	3		6.2	*****		*****			1/30/00 002 171		0/1/11
<u>×</u>	0	9.0 SU	7.3	*****	9		6.5	******		******		ב ב	2003	1	14/1/00
<u>≤</u>	0	9.0 su	7.7	******	9	6.0	6.7	******		*****		밀	5000 PH		10/1/06
≤ >	0	9.0 SU	7.6		<u> </u>	6.0	6.5	*****		****	***************************************	P)7 002 PH	1/31/07	1/1/07
_ <u>≤</u>	1	9.0 80	7.4	*	0	6.0	6.6	******		******		PH)7 002	2/28/07	2/1/07
_ <u>≤</u>		9.0 %	7.0		0	6.0	6.2	*****		*******		PH	002	3/31/07	3/1/07
. <u>≤</u>		9.0	7.2				6.4	*****		*******		PH	7 002	4/30/07	4/1/07
		9.0	7.3		9		6.4	***		*******		PH	5/31/07 002	5/31/0	5/1/07
. ≥		9.0	7.2				6.6	******		*******		PH	7 002	6/30/07	6/1/07
: <u>≤</u>		9.0 su	6.7		2		6.5	******		*******		PH	7 002	7/31/07	7/1/07
≤		9.0 SU	7.7	****			6.4	*******		******		PH PH		8/31/07	8/1/07
S A	1	9.0 SU	7.2		3	6.0	6.3	******		*******		PH	7 002 PH	9/30/07	9/1/07
<u> </u>	┸	9.0 SU	7.4	i		6.0	6.3	*******		******		모		10/31/07	10/1/07
<u> </u>	4	9.0 SU	6.9				6.2	*****		****		모	7 002	11/30/07	11/1/07
	<u> </u>	9.0	7.4	1	7	6.0	6.3	******		*******		PH	82	12/31/07	12/1/07
	1	9.0	7.2	****			6.3	********		******		모	82	1/31/08	1/1/08
		9.0 SU	7.3	****		6.0	6.6	******		*******		PH	8 002	2/29/08	2/1/08
EDS red	Δ̈	Lim Max Unit	MAX	Lim Avg	AVG	Lim Min	MIN	Lim Max Unit	MAX	Lim Avg	Parameter Description AVG	Parame	# 169		Monitor Start Date
		07703333333			22.5										

3		30 MOIL	8.4	- 24	~ 4			0.6 KGD	8		0.4	.06	10/31/06 003 BOD5	10/1/06
3	> <	36 MOI) 0	l	T					.		.03	11/30/06 003 BOD5	11/1/06
3		36 MOIL	2 >									.06	12/31/06 003 BOD5	12/1/06
3										Ī.	0.4	.05	1/31/07 003 BOD5	1/1/07
3) c		1 00									.07	2/28/07 003 BOD5	2/1/07
3			6					0.6 KG/D	6		0.4	.06	3/31/07 003 BOD5	3/1/07
: ≤	4		5			******		0.6 KG/D	03	_	0.4	.03	4/30/07 003 BOD5	4/1/07
	<u> </u>		7			******		0.6 KG/D		.09	0.4	.09	5/31/07 003 BOD5	
Z	<u> </u>	36 MG/L	5			******		0,6 KG/D	ر 02		0.4	.02	6/30/07 003 BOD5	T
3	1	36 MG/L	6			***************************************		0.6 KG/D		.05	0.4	.05	7/31/07 003 BOD5	7/1/07
: ≤		36 MG/L	7		7	***		0.6 KG/D		.07	0.4	.07	8/31/07 003 BOD5	7
ĭ A	1	36 MG/L	7			***		0.6 KG/D		.05	0.4	.05	9/30/07 003 BOD5	
Z	┺	36 MG/L	7			1		0.6 KG/D		.05	0.4	.05	10/31/07 003 BOD5	10/1/07 1
3			7			******		0.6 KG/D		.07	0.4	.07	11/30/07 003 BOD5	$\neg \uparrow$
. ≤	┛	36 MG/L	7			:		0.6 KG/D		0.05	0.4	0.05	12/31/07 003 BOD5	12/1/07 1
3		36 MG/L	7		7	***		0.6 KG/D		0.07	0.4	0.07	1/31/08 003 BOD5	
S A			6			*****		0.6 KG/D		0.05	0.4	0.05	2/29/08 003 BOD5	T
3	┸	36 MG/L	6		6	******		0.6 KG/D		0.045	0.4	0.045	3/31/08 003 BOD5	T
ĭ A	1		7			*******		0.6 KG/D		0.07	0.4	0.07	4/30/08 003 BOD5	T
Z	1		4					0.6 KG/D		0.02	0.4	0.02	5/31/08 003 BOD5	T
≥	ــــ	36 MG/L	6			****		0,6 KG/D		0.02	0.4	0.02	6/30/08 003 BOD5	
≤ A	ــــــــــــــــــــــــــــــــــــــ	36 MG/L	5			******		0.6 KG/D		0.006	0.4	0.006	7/31/08 003 BOD5	
≤ A	0	36 MG/L	6	24				0.6 KG/D		0.034	0.4	0.034	8/31/08 003 BOD5	8/1/08
Z	0	36 MG/L	6		6	******		0.6 KG/D		0.011	0.4	0.011	9/30/08 003 BOD5	T
Z	<u> </u>	36 MG/L	6		6	******		0,6 KG/D		0.05	0.4	0.05	10/31/08 003 BOD5	
Z >	0	36 MG/L	6	24	6	*******		0.6 KG/D		0.06	0.4	0.06	8	
3	↓	36 MG/L	5		رى د	*******		0.6 KG/D		0.07	5.0	0.07	12/31/08 003 BOD5	
\ ≥		36 MG/L	7		7	*****		0.6 KG/D		0.05	0.4	0.05	1/31/09 003 BOD5	1/1/09
∫ ≤	0	36 MG/L	6		6	*****		0.6 KG/D		0.05	0.4	0.05	2/28/09 003 BOD5	2/1/09
	ـــــ		7		7	1		0.6 KG/D		0.013	0.4	0.013	3/31/09 003 BOD5	П
∫≤		36 MG/L	6		6	***		0.6 KG/D		0.06	0.4	0.06	4/30/09 003 BOD5	
S	1		7.9	1		6.0	6.3	****	******		****		12/31/03 002 PH	
_ ∃	0	9.0	8.0	800000		6.0	6.7	1	******		*******		1/31/04 002 PH	
3	0	9.0	8.2	*******		6.0	7.1	3	******		*******		2/29/04 002 PH	T
3	<u></u>	9.0	8.5	S. S. S. S.			6.3	*	****		********		3/31/04 002 PH	П
≤	0	9.0	7.3			6.0	6.3	ŧ	******		*******		4/30/04 002 PH	4/1/04
≤	0	9.0	7.4			6.0	6.5	1	*******		*******		5/31/04 002 PH	
<u> </u>	1	9.0	7.0				6.4	. ₹	*******		********		6/30/04 002 PH	
≤	0	9.0	7.4	******		6.0	6.5	*	******		*******		7/31/04 002 PH	7/1/04
I≤	↓	9.0	8.1	2000000		6.0	7.0	*	********		***************************************		8/31/04 002 PH	8/1/04
3	↓	9.0	7.5	F 100 1050-000			6.0	*	*		******		9/30/04 002 PH	9/1/04
p91	Ě	Lim Max Conc Unit	MAX	im Avg	AVG	Lim Min	MIN	ax Unit	Lim Max	MAX	Lim Avg	AVG	Parameter Description	Monitor Start Date
<u>ე</u>			22.5		<u>}</u>									

MG/L MG/L MG/L MG/L		***************************************		3	******		O & KG/D		0.07	3 N	0.07		
	<u>۔</u>	6.1	24		*******		0.6 KG/D		♯ 0.06	0.4	0.06	11/30/08 004 TSS	T
		7.3		7.3	*****		0.6 KG/D		≠ 0.10	0.4	0.10	12/31/08 004 TSS	T
		Ī		6.8	******		0.6 KG/D		0.05	0.4	0.05	1/31/09 004 TSS	1/1/09
		T			******	_	0.6 KG/D		0.05	0.4	0.05	2/28/09 004 TSS	2/1/09
		T			******	 			0.013	0.4	0.013	3/31/09 004 TSS	3/1/09
					******	Ĺ	0.6 KG/D		0.08	0.4	0.08	4/30/09 004 TSS	4/1/09
					*******		0.6		.17	0.4	.17	12/31/03 003 BOD5	12/1/03 1
+-		Ī			*******	-	0.6			0.4	.02	1/31/04 003 BOD5	1/1/04
+					*******	-	0.6		.11	0.4	.11	2/29/04 003 BOD5	
╁					*******	-	0.6		.08	0.4	.08	3/31/04 003 BOD5	3/1/04
T				14	*******	 	0.6		:1	0.4	.11	4/30/04 003 BOD5	
T				8	******	<u> </u>	0.6		.05	0.4	.05	5/31/04 003 BOD5	5/1/04
T		14		14.8	******	-	0.6		.1	0.4	.11	6/30/04 003 BOD5	6/1/04
†		T		4	*******		0.6		.01	0.4	.01	7/31/04 003 BOD5	7/1/04
Ť				7	*****	-	0.6			0.4	.03	8/31/04 003 BOD5	8/1/04
T			24	9	******		0.6		.09	0.4	.09	9/30/04 003 BOD5	9/1/04
T		1		1	******	 	0.6		.10	0.4	.10	10/31/04 003 BOD5	10/1/04 1
T				8	*******	<u> </u>	0.6			0.4	.06	11/30/04 003 BOD5	11/1/04 1
†				8	*****		0.6		.08	0.4	.08	12/31/04 003 BOD5	
†				9	***		0.6		.017	0.4	.017	1/31/05 003 BOD5	П
Ť				7	****		0.6		.07	0.4	.07	2/28/05 003 BOD5	
T				8	***		0.6		.06	0.4	.06	3/31/05 003 BOD5	
T				5	****		0.6		.03	0.4	.03	4/30/05 003 BOD5	4/1/05
T				5	******		0.6		.06	0.4	.06	5/31/05 003 BOD5	
T			24	6	********		0.6		.05	0.4	.05	6/30/05 003 BOD5	
†				5	******		0.6		.005	0.4	.005	7/31/05 003 BOD5	
T				6	***		0.6		.04	0.4	.04	8/31/05 003 BOD5	
T				4	***	-	0.6			0.4	.06	9/30/05 003 BOD5	
T		6		6	******		0.6		.03	0.4	.03	10/31/05 003 BOD5	10/1/05 10
T			24	ر ن	*****		0.6		.04	0.4	.04	11/30/05 003 BOD5	T
T			22	7	*****		0.6		.05	0.4	.05	12/31/05 003 BOD5	J
T			24	6	******		0.6		.05	0.4	.05	1/31/06 003 BOD5	
T		O1	24	5	*******		0.6		.02	0.4	.02	2/28/06 003 BOD5	Т
T		6	24	6	****		0.6		.04	0.4	20.	3/31/06 003 BOD5	
MG/L		7	24	7	*******		0.6 KG/D		.06	0.4	.06	4/30/06 003 BOD5	
	36	6	24	6	*******		0.6 KG/D		.05	0.4	.05	5/31/06 003 BOD5	П
MG/L			24	5	*******		0.6 KG/D		.028	0.4	.028	6/30/06 003 BOD5	Т
MG/L	36		24		*******		0.6 KG/D	0		0.4		7/31/06 003 BOD5	Т
MG/L	36	6	24	6	*******		0.6 KG/D		.03	0.4	.03	8/31/06 003 BOD5	8/1/06 8
	36		24	5	*		0.6 KG/D		.03	0.4	.03	9/30/06 003 BOD5	9/1/06 9
Unit	Lim Max	MAX	Lim Avg	AVG	Lim Min	MIN	ax unit	Lim Max	MAX	Lim Avg	AVG	Parameter Description	Monitor Start Date

M		36	4.3	24	4.3	***		0.6		.05	0.4	.05	004 TSS	5/31/05 C	5/1/05
_ ≤	0	36	7.1		7.1	*		0.6		.06	0.4	.06		6/30/05 0	6/1/05
S A	-	36	6.8		6.8	****		0.6		.006	0.4	.006	004 TSS	7/31/05 0	7/1/05
M A	-	36	9.4		9.4	*****		0.6		.06	0.4	.06	004 TSS	8/31/05 0	8/1/05
	-	36	5.8		5.8	***		0.6		.09	0.4	.09	004 TSS		9/1/05
<u> </u>	 c	36	4.7					0.6		.02	0.4	.02	004 TSS	10/31/05 0	10/1/05
<u> </u>	-	36	4.4			*****		0.6		.04	0.4	.04	004 TSS	11/30/05 0	11/1/05
. ≥ >	0	36	4.9		4.9	*****		0.6		.03	0.4	.03	004 TSS	12/31/05 0	12/1/05
S	0	36	5.8			*****		0.6		.04	0.4	.04	004 TSS	1/31/06 0	1/1/06
	0	36	5.8		5.8	***		0.6		.02	0.4	.02	004 TSS	2/28/06 0	2/1/06
: S) c	36	6.1			******		0.6	-	.04	0.4	.04	004 TSS	3/31/06 0	3/1/06
. ⊠ A		36 MG/L	7.7					0.6 KG/D		.07	0.4	.07	004 TSS	4/30/06 0	4/1/06
	0	36 MG/L	5.1		5.1	1		0.6 KG/D		.04	0.4	.04	004 TSS	5/31/06 0	5/1/06
. ≤ . A	, c	36 MG/L	4.4			*******		0.6 KG/D		.025	0.4	.025	004 TSS	6/30/06 0	6/1/06
: ≥ > >		36 MOL				******		0,6 KG/D	0		0.4		004 TSS	7/31/06 0	7/1/06
3 ≥	- -	36 MG/L	7.1		7.1	*******				.04	0.4	.04	004 TSS	8/31/06 0	8/1/06
. <u>×</u>	-	36 MG/L	5.8		5.8	******		0.6 KG/D		.03	0.4	.03	004 TSS	9/30/06 0	9/1/06
. <u>⊠</u>		36 MG/L	3.7		3.7	***		0.6 KG/D		.02	0.4	.02	004 TSS	10/31/06 0	10/1/06
<u> </u>	1	36 MG/L	6.5		6.5	****		0.6 KG/D		.03	0.4	.03	004 TSS	11/30/06 0	11/1/06
<u> </u>	.1	36 MG/L	5.3		5.3	****				.05	0.4	.05	004 TSS	12/31/06 0	12/1/06
<u> </u>	c	36 MG/L	6.8		6.8			0.6 KG/D		.05	0.4	.05	004 TSS	1/31/07 0	1/1/07
M A		36 MG/L	8.2		8.2	1		0.6 KG/D		.07	0.4	.07	004 TSS	2/28/07 0	2/1/07
<u>S</u>	<u></u>	36 MG/L	7.5		7.5	*******		0.6 KG/D		.08	0.4	.08	004 TSS	3/31/07 0	3/1/07
X	1	36 MG/L	4.1		4.1	******		0.6 KG/D		.02	0.4	.02	004 TSS	4/30/07 00	4/1/07
Z A	1	36 MG/L	5.8		5.8	******		0,6 KG/D		.08	0.4	.08	004 TSS	5/31/07 00	5/1/07
S	<u></u>	36 MG/L	6.2		6.2	*******		0.6 KG/D		.02	0.4	.02	004 TSS	6/30/07 00	6/1/07
M A	1	36 MG/L	2.4	22	2.4	********		0.6 кс⁄D		.02	0.4	.02	004 TSS	7/31/07 00	7/1/07
<u> </u>	0	36 MG/L	4.3		4.3	****		0.6 KG/D		.05	0.4	.05	004 TSS	8/31/07 00	8/1/07
	ــــــــــــــــــــــــــــــــــــــ	36 MG/L	6.1	24	6.1	********		0.6 KG/D		.04	0.4	.04	004 TSS	9/30/07 00	9/1/07
<u>S</u>	┺	36 MG/L	6.6	24	6.6	*******		0.6 KG/D		.04	0.4	.04	004 TSS	10/31/07 00	10/1/07
≤		36 MG/L	7.0		7.0	********		0.6 KG/D		.07	0.4	.07	004 TSS	11/30/07 00	11/1/07
_ ≥	┸	36 MG/L	8.4		8.4	******		0.6 кол		0.06	0.4	0.06	004 TSS	12/31/07 00	12/1/07
≤	0	36 MG/L	7.2	24	7.2	********		0.6 KG/D		0.07	0.4	0.07	004 TSS	1/31/08 00	1/1/08
≤	1	36 MG/L	4.2	24	4.2	********		0.6 KG/D		0.03	0.4	0.03	004 TSS	2/29/08 00	2/1/08
≤ >	1	36 MG/L	5.8	24	5.8	*******		0,6 KG/D		0.044	0.4	0.044	004 TSS	3/31/08 00	3/1/08
≤	.1	36 MG/L	3.4	24	3.4	******		0.6 KG/D		0.04	0.4	0.04	004 TSS	4/30/08 00	4/1/08
<u>≤</u>	1	36 MG/L	5.8	24	5.8	*******		0.6 KG/D		0.03	0.4	0.03	004 TSS	5/31/08 00	5/1/08
≥ A	0	36 MG/L	8.8	24	8.8	*******		0.6 KG/D		0.03	0.4	0.03	004 TSS		6/1/08
M A		36 MG/L	8.2	24	8.2	******		0,6 кол		0.009	0.4	0.009		7/31/08 00	7/1/08
<u>×</u>	┸	36 MG/L	8.4	24	8.4	*******		0.6 KG/D		0.048	0.4	0.048	004 TSS	8/31/08 00	8/1/08
<u>≤</u>	0	36 MG/L	5.3	24	5.3	********		0,6 KG/D		0.010	0.4	0.010	004 TSS	9/30/08 00	9/1/08
EDS Fred	Ϋ́	Lim Max Unit	MAX L	Lim Avg	AVG	Lim Min	MIN	ax Oty Unit	Lim Max	MAX	Lim Avg	QTY AVG	Parameter Description	# neq	Monitor Start Date

2	0	30,1					0.0	7.6	******	-	******	****		5/31/07 007 DO	5/1/07
								7.6	*****	*	*	*****		6/30/07 DO	6/1/07
S 3								7.7						7/31/07 007 DO	7/1/07
		MG/L	*****		****		I	1:1		l				8/31/07 007	8/1/07
≤ A		MG/L	*******		*****			7.4	****	***	***	****		9/30/07	9/1/0/
≤ ≻	0	MG/L	******		******			7.1	******	*	***	****	-	200 701000	0/1/07
≤	0	MQ/L	******	. 7	********		6.0	8.2	*****	****	***	*****	+	10/31/07 007	10/1/07
≤ >	0	MG/L	83.85.583		********		6.0	8.2	****	į	***	******		11/30/07	11/1/07
≤	c	MG/L	3 ·		******		6.0	8.5	******	į	*	*******			12/1/07
S	1	MG/L						8.2	*****	*	*	********		1/31/08 007 DO	1/1/08
:	┷	WIG/L						8.8	****	1	*	*******		2/29/08 007 DO	2/1/08
: ≤ · >		MG/L						8.1	******	*	*	******		3/31/08 007 DO	3/1/08
: ≥ > >		MG/L						7.3	*	*	‡	*******		4/30/08 007 DO	4/1/08
:		MGL						8.3	******	****		******		5/31/08 007 DO	5/1/08
: ≤ > >	4	WG/L						7.9	*****	1	*	*****		6/30/08 007 DO	6/1/08
: S		NG C						8.5	*****	*	•	****		7/31/08 007 DO	7/1/08
3		NG/E						7.3	*****	***	1	***		8/31/08 007 DO	8/1/08
\$ \$ > 2								1.7				*****		9/30/08 007 DO	9/1/08
A		MG/			****			1:				-		10/31/08 007 DO	10/1/08
S >	0	MG/L	*******		******			71	*****	*	*	*****		11/30/06 007	1 1/ 1/00
ĭ A	0	MG/L	****		*******		6.0	9.3	*****	***	*	******	+	11/20/08 007	44/4/00
⊠ A	0	MG/L	*******		*******		0.0	10.2	*****	***	*	******		12/31/08 007	12/1/08
_ ≤ A		MG/L	*******				6.0	9.6	*****	***	•	*******		1/31/09 007 DO	1/1/09
<u> </u>	c	MG/L			*****		6.0	9.7	******	*	1	*******		2/28/09 007 DO	2/1/09
≥		MG/L						9.4	*****	*	1	********		3/31/09 007 DO	3/1/09
: <u>≤</u> • >		MG/L					6.0	8.8	*	**	*	****		4/30/09 007 DO	4/1/09
. ⊴	1		30.0	9.3		9.3			0.6	11	0.4		.11	12/31/03 004 TSS	12/1/03
:			Π	T		9.1	*******		0.6	.03	0.4	03	.0	1/31/04 004 TSS	1/1/04
: 3 : 3			30.0			9.7	***************************************		0.6	6	0.4		.10	2/29/04 004 TSS	2/1/04
						8.8			0.6	.07	0.4		.07	3/31/04 004 TSS	3/1/04
\$ \$						8.4	47.00		0.6	.06			.06	4/30/04 004 TSS	4/1/04
3				T		8.4			0.6	.06	0.4		.06	5/31/04 004 TSS	5/1/04
S S				9.9		9.9			0.6	.08			.08	6/30/04 004 TSS	6/1/04
: ≤				8.3		8.3			0.6	.03			.03	7/31/04 004 TSS	7/1/04
: <u>≤</u>			36	11.6		11.6	********		0.6	.04	0.4		.04	8/31/04 004 TSS	8/1/04
. ≥ >				6.2		6.2	*********		0.6	.06	0.4		.06	9/30/04 004 TSS	9/1/04
: ≤				8.5	24	8.5	********		0.6	.07	0.4		.07	10/31/04 004 TSS	10/1/04
:			30	7.6	24	9.2			0.6	.07	0.4		.07	11/30/04 004 TSS	11/1/04
: <u>≤</u>			36	8.9		8.9	******		0.6	.08			.08	12/31/04 004 TSS	12/1/04
. ≥			36	9.3		9.3	******		0.6	017	0.4 .0		.017	1/31/05 004 TSS	1/1/05
. ≥			30	7.6	24	7.6	*****		0.6	.07	0.4		.07	2/28/05 004 TSS	2/1/05
: <u>≤</u>	4		30	7.9	24	7.9	*****		0.6	.06	0.4		.06	3/31/05 004 TSS	3/1/05
			38	8.4	24	8.4	*******		0.6		0.4		.06	4/30/05 004 TSS	4/1/05
	req X	S.						M S	Max unit	X Lim Max	Wax	Lim Avg	AVG	Parameter Description	Monitor Start Date
		-	***********	CONC		CONC		3	7		_ }		7		

IVI III			***************************************		2	0.0	9.3			***		3 007 DO	12/31/03	12/1/03
S S))	****					6.7			****		4 007 DO	1/31/04	1/1/04
S :		******		***	1		2.3					4 007 DO	2/29/04	2/1/04
≤ I	0 1	*****	-	*****			1 9.		• 6 5		-	007		3/1/04
S I	0	******	*	*****	2		0 4	******	*	*****		2	Т	4/1/04
<u>≤</u>	0	****	*	******	9	6.0	8.7	******	*	******	+	3 5	40000	0,10
M	0	*******	*	*******	0	9 6.0	7.9	******	*	*******	+	007	5/31/04	5/1/04
N H	0	******	*	*******	0	2 6.0	7.2	******		****		4 007 DO	T	6/1/04
<u> </u>	C	*****	*	*****	0	6.0	7.1	******		******		4 007 DO	7/31/04 007	7/1/04
: ≤ •	1		*	*****	0		7.9	****	*	******		4 007 DO	8/31/04 007	8/1/04
3					0		7.2	***	*	******		4 007 DO	9/30/04 007	9/1/04
: ≤ > >					0		8.0	******	*	*****		4 007 DO	10/31/04	10/1/04
\$ 3 > 3			,475		T ^c		8.8	*****	*	***		4 007 DO	11/30/04 007	11/1/04
S S	┈				9		7.9	*****	*	****		4 007 DO	12/31/04 007	12/1/04
2 ≥	4				0		8.5	****	*	*****		5 007 DO	1/31/05	1/1/05
≥					1		8.0	*****	*	******		5 007 DO	2/28/05	2/1/05
3 ≥					1		8.8	****	*	***		5 007 DO	3/31/05	3/1/05
≥ 3	_1				T		9.2	****	*	**		5 007 DO	4/30/05 007	4/1/05
> 3		****			1		0.9					007 DO	5/31/05	5/1/05
A :		****			1		2 2					007 DO	6/30/05 007	6/1/05
⊠ A	0	****		******	7		70	*****	<u> </u>				//31/05 00/	7/1/05
≤ >		*****		*******	T		6.2	****	*	*****		_ 1	000 000	0/1/0
M A		*****		***	7		7.4	****	*	******	1		0/21/05	0/4/05
M A		******		*******		6.0	6.7	****	2	******		8	9/30/05 007	9/1/05
≥	0	****		****		6.0	7.6	****	*	*******		007 DO	10/31/05	10/1/05
_ ≤ >	┸	******		******	T	6.0	8.2	******	ż	******		007 DO	11/30/05	11/1/05
N A	1			*****	m		7.8	*****	ŧ	*******		007 DO	12/31/05	12/1/05
: ≤ 	1	*******		******	T	6.0	6.6	***	ž	*******		007 DO	1/31/06	1/1/06
≥	4			*****		6.0	6.7	****	t	******		007 DO	2/28/06	2/1/06
:	<u> </u>				T		6.4	*	1	****		007 DO	3/31/06 007	3/1/06
:		MICIC			Т	Π	6.3	*****	*	***		007 DO	4/30/06 007	4/1/06
> >					T		6.1	*****	1	***		007 DO	5/31/06	5/1/06
S) c	MOIL			1		9.0	*****	1	i		007 DO	6/30/06	6/1/06
> >	>				Т	6.0		******	<u> </u>	***		007 DO	7/31/06	7/1/06
. ≥ > >		MGL			T		6.9	***	1	******		007 DO	8/31/06	8/1/06
: ≤ > >) 0	MOIL			Т		7.6		1	*******		007 DO	9/30/06 007	9/1/06
. ≥) c						9.4		:	*****		007 DO	10/31/06 007	10/1/06
. ≤ >	0			***************************************			9.2	*****	#	*******		007 DO	11/30/06	11/1/06
3) c						11.6	***	*	***		007 DO	12/31/06	12/1/06
: ≧) c						11.8	***	*	*******		007 DO	1/31/07	1/1/07
: <u>≤</u>) c	MGIL					12.0	7,000	:	*******		007 DO	2/28/07	2/1/07
<u> </u>) 0						7.9	*****	*	****		007 DO	3/31/07	3/1/07
S S) c						7.2	*****	#	1		007 DO	4/30/07	4/1/07
		******* MC/				Ī		-	H	1	1	#		olait Date
CEDS	Ω	Lim Max Conc	MAX MAX	Lim Avg	AVG	Lim Min	MEN C	Lim Max Oty	₹ 9	Lim Avg	& Q Y S	পু Parameter Description		Monitor
1	4													

O															
1000	٥	.5	6.6	.51	******		*	*****	*	*******		9 AMMONIA, AS N	06 039	1/31/06	1/1/06
и.	Ī		Ι									9 AMMONIA, AS N	06 039	2/28/06	2/1/06
-1		T	,		***						-		06 039	3/31/06	3/1/06
	6.6	2.6	66	2.6	******		*	****	*	*******	+			T	4/ 1/00
	6.6	6	6.6	.6	****		*	******	*	*****	+	9 AMMONIA AS N	039	T	4/1/0
MG/L		_	6	1.8	*******		•	*******	*	*******		9 AMMONIA, AS N	06 039	5/31/06	5/1/06
36 (11)			6	.2	*****		1	*****	*	*******		9 AMMONIA, AS N	06 039	6/30/06	6/1/06
1 -			0				1	****	*	*******		9 AMMONIA, AS N	06 039	7/31/06	7/1/06
1 7	Ī	5.8	6	5.8	***************************************		I	******	*	*****		039 AMMONIA, AS N		8/31/06	8/1/06
V. 2000.			, 0	3./			1		•	****		9 AMMONIA, AS N	06 039	9/30/06	9/1/06
M (1		T	, 0				;	***************************************		****		9 AMMONIA, AS N	06 039	10/31/06	10/1/06
NO.										*******		9 AMMONIA, AS N	06 039	11/30/06	11/1/06
			0 0									AMMONIA, AS	06 039	12/31/06	12/1/06
MGA	200		b Ç	T								AMMONIA, AS	07 039	1/31/07	1/1/07
		T	, ,									9 AMMONIA, AS N	07 039	2/28/07	2/1/07
MG/I	» (c			. ·								AMMONIA, AS		3/31/07	3/1/07
MG/L				٠, د							-	AMMONIA, AS			4/1/07
=1-			\int_{∞}	27	****		*	****			l			Т	5/1/07
MG/L	6.6	T	6	4.8	******		*	*********		****				T	0/1/0/
MG/L	6.6	2.9	6.6	2.9	******		*	******		******	\dagger	N SA AINOMMA		T	6/4/07
MG/L	6.6	4.0	9.6	4.0	*******		*	*****	*	*******	1			7/31/07	7/1/07
MG/L	6.6	5.2	6.6	5.2	********		*	*****		******			039	8/31/07	8/1/07
			9	1.6	******		1	********	•	*******		AMMONIA, AS N	039	9/30/07	9/1/07
MG/L			60	1.0	******		*	*******	80. 7 0	*******		AMMONIA, AS N	039	10/31/07	10/1/07
			6	4.8	1		*	*******	-	********		AMMONIA, AS N	039	11/30/07	11/1/07
MG/L	6.6		6	5.0	*		*	********	-	******		AMMONIA, AS N)7 039	12/31/07	12/1/07
MG/L	6.6		6	4.2	********		#	*		*******		AMMONIA, AS N)8 039	1/31/08	1/1/08
			6.	3.1			*	744444		********		AMMONIA, AS N .)8 039	2/29/08	2/1/08
-1			0	5.8			*	*****		*****		AMMONIA, AS N)8 039	3/31/08	3/1/08
				3.1		***************************************	*	******		***		AMMONIA, AS N)8 039	4/30/08	4/1/08
			0.0	3.0				*****		*****		AMMONIA, AS N)8 039	5/31/08	5/1/08
				1.2	*****		1 2	******		*		AMMONIA, AS N)8 039	6/30/08	6/1/08
			6	1.1	*****		3	***		*******		039 AMMONIA, AS N	8 039	7/31/08	7/1/08
			6.6	1.1			*	*		******		AMMONIA, AS N	8 039	8/31/08	8/1/08
3 9			6.6	1.3	*****		*	*******		******		AMMONIA, AS N	8 039	9/30/08	9/1/08
<u> </u>	6.6		6.6	2.6	******		1	******		*******		AMMONIA, AS N	8 039	10/31/08	10/1/08
MG.	6.6		6.6	1.6	*******		4	*****		*******		AMMONIA, AS N	8 039	11/30/08	11/1/08
		2.8	6.6	2.8	******		-	*******		******		AMMONIA, AS N	8 039	12/31/08	12/1/08
MG/L		5.2	6.6	5.2	*******		4	********		*******		039 AMMONIA, AS N	9 039	1/31/09	1/1/09
MG/L	0	4.4	6.6	4.4	*******		1	******		********		AMMONIA, AS N	9 039	2/28/09	2/1/09
MG/L	0	2.1	6.6	2.1	*******		\$	*******		*******		AMMONIA, AS N	9 039	3/31/09	3/1/09
2	0	4.2	6,6	4.2			I	*******		******		AMMONIA, AS N	9 039	4/30/09	4/1/09
C _D it	Lim Max	MAX	Lim Avg	AVG	Em Min	0.000.000.00	Unit S	Lim Max	MAX	Lim Avg	AVG	Parameter Description	# 18		Start Date
2000			STATE OF STREET	Š		Č						***			

	ļ		£				1.0		7		*******		57 CL2, TOTAL CONTACT	2/28/09 157		2/1/09
	—	MG/I			****			1.1			*****		£	3/31/09 157		3/1/09
<u> </u>		MGA	******		***			6.1					CL2,	4/30/09 157		4/1/09
S A		MG/L	*******		***			1	******	*		+			Г	0/1/04
<u>≥</u>			¥	×	2	×	*****	***************************************	******		******			- F	T	9/1/
S A	0		ΝĽ	٠.	NL	۵	******		*****	*	*****	1		*****	Т	9/1/04
_ <u>≤</u>	<u></u>			2			*******		******	*	******		120 E.COLI		T	10/1/04
≤							*****		******	*	******		20 E.COLI	11/30/04 120	T	11/1/04
: <u> </u>			I			\$	*******		****	*	*******		20 E.COLI	12/31/04 120		12/1/04
3 3						2			****		*******	1	20 E.COLI	1/31/05 120		1/1/05
2 3						5 6			***************************************		*******		20 E.COLI	2/28/05 120		2/1/05
						5 6		-			*******	-	20 E.COLI	3/31/05 120		3/1/05
<u> </u>		-				Ī							20 E.COLI	4/30/05 120		4/1/05
≤ A	$\frac{1}{2}$						***						20 E.COLI		Π	5/1/05
≤ A						٥ ا	******		****	*	*****	+	0 n.coc	6/30/05 120	Т	6/1/05
N A	0		7	2	2	۵	*****		****	*	*****		S E COL		Т	2
M A	-		≩	٤	7M	<2	*******		*****	*	******	1			Т	7/1/05
S A						<2	*********		****	*	*******		20 E.COLI		П	8/1/05
S A	c	#TOOM	NΕ		¥.	NR	*******		******	*	******		20 E.COLI	4/30/09 120		4/1/09
: S	<u></u>	╄	0.0		0.0	5.2			*****		******		39 AMMONIA, AS N	12/31/03 039		12/1/03
#		-		T	0.0	1.4					*********		1/31/04 039 AMMONIA, AS N	31/04 03		1/1/04
<u> </u>						10.0							39 AMMONIA, AS N	2/29/04 039		2/1/04
						40.0								3/31/04 039		3/1/04
計				T	6	٦ : د	******		****	1				4/30/04 039	Т	4/1/04
≤ ±	0	$\frac{1}{1}$	6.6		66	4.7	******		*****	*	******	+		0/01/04	T	D/1/04
М	0		6.6	1.8	6.6	1.8	*******	+	***	*	******	ŀ		24/04/02	T	E/4/5
<u>≤</u>	0		6.6	5.4	6.6	5.4	*******		****	3	*******			6/30/04 039	Т	6/1/04
M A	0		6.6	1.6	6.6	1.6	********		******	1	*****	1	9 AMMONIA, AS N	7/31/04 039	T	7/1/04
1	┸		6.6	.7	6,6	.7	*******		******	1	******		8/31/04 039 AMMONIA, AS N	31/04 039	T	8/1/04
:			0.0	5.2	6.6	5.2	******		****	ž	*******		9 AMMONIA, AS N	9/30/04 039	T	9/1/04
		_	0.0	3.8	0,6	3.8	***************************************		***	1	*******		9 AMMONIA, AS N	10/31/04 039		10/1/04
:	┸		0.0	4.9	6.6	4.9	******		****	*	****		9 AMMONIA, AS N	11/30/04 039	- 1	11/1/04
,			0.0	4.0	0.0	4.8			******	1	******		AMMONIA, AS N	12/31/04 039		12/1/04
, ;			0.0	4.0	0.6	4.8			*****	i	****		9 AMMONIA, AS N	1/31/05 039		1/1/05
		-	0.0	3.6	0.0	3.6			*****	1	****		039 AMMONIA, AS N	2/28/05 039		2/1/05
			0.0	5.4	0.0	5.4			*****	2			9 AMMONIA, AS N	3/31/05 039		3/1/05
)	4		0.0	1.2	0.6	1.2	***************************************		*******	<u> </u>	***		9 AMMONIA, AS N	4/30/05 039		4/1/05
;	3		0.0	1.9	6.6	1.9	*****		•	1	***		9 AMMONIA, AS N	5/31/05 039		5/1/05
≥	C		0.0	7.5	0,0	1.5	***************************************		******	#	****		9 AMMONIA, AS N	6/30/05 039		6/1/05
, ,	1		6.0		6.6	7			****	*	***		9 AMMONIA, AS N	7/31/05 039		7/1/05
: <u>≤</u>			0.0	4.5	6.6	4.5	******		******	*	*******		9 AMMONIA, AS N	8/31/05 039		8/1/05
, ;	. ≥		0.0	· ~	6.6		****		***	*	******		9 AMMONIA, AS N	9/30/05 039		9/1/05
: <u>≤</u>	3		0.0	2.0	0,0	2.0	****		****	*	******		9 AMMONIA, AS N	10/31/05 039		10/1/05
, >			6.6	1.2		1.2	********		1	*	*******		9 AMMONIA, AS N	11/30/05 039		11/1/05
	1	Unit		MAX		AVG		MIN	Lim Max Unit	MAX Lir	Lim Avg	AVG	Parameter Description	# 1eC	Ф	Monitor Start Date
	VVVVVVV		222			SONO				2						

	-						1.0	59					2, TOTAL CONTACT	157 CL2,	9/30/05	9/1/05
≤ A	***************************************	******		******	31.9			*****	<u> </u>			1 -	Z, TOTAL CONTACT	15/ CL2,	10/31/05	10/1/05
≤ A	0	******		******	2		1	****	***	**	******	+				17 1700
S	0	******		******	0	1.0	1.2	*****	***	*	******	1				11/1/05
Z A	0	****		*****	0	1.0	<u>-1</u>	******	***	*	*******	-	2, TOTAL CONTACT	157 CL2,	12/31/05	12/1/05
_ <u>≤</u>	0	*******		*****	0	1.0	1.4	*****	****	•	***	-	2, TOTAL CONTACT	157 CL2,	1/31/06	1/1/06
3				*********	0		1.6	****	1	‡	*****	-	2, TOTAL CONTACT	157 CL2,	2/28/06	2/1/06
: <u>≤</u>) c						1.4		*****	*	*****	1	2, TOTAL CONTACT	157 CL2,	3/31/06	3/1/06
: ≥	MG/C				0		1.3	H	***	*	******	T	2, TOTAL CONTACT	157 CL2,	4/30/06	4/1/06
: ≧	+						1.2		*****	ľ	******	7	2, TOTAL CONTACT	157 CL2,	5/31/06	5/1/06
S	4				9		1.9	***	******	-	***	Ī	2, TOTAL CONTACT	157 CL2,	6/30/06	6/1/06
:	-								*******	1	*****		2, TOTAL CONTACT	157 CL2,	7/31/06	7/1/06
: <u>≤</u>	WO'L						1.2		***	1		–	CL2, TOTAL CONTACT	157 CL:	8/31/06	8/1/06
S S	-				9		1.1	***	*******	1	***	 	2, TOTAL CONTACT	157 CL2,	9/30/06	9/1/06
: ≤ > >	+				9		1.2	**	******	1	*****	_	2, TOTAL CONTACT	157 CL2,	10/31/06	10/1/06
:	4				3		1.4		*****	-	*****	٦	2, TOTAL CONTACT	157 CL2,	11/30/06	11/1/06
: ≤	+						1.2	*	******	*	*****	_	2, TOTAL CONTACT	157 CL2,	12/31/06	12/1/06
:	-	.					1.2	***	******	*	****		2, TOTAL CONTACT	157 CL2,	1/31/07	1/1/07
S) (- -	2, TOTAL CONTACT	157 CL2,	2/28/07	2/1/07
Z A	0	*********		****	ָ 	:	 	*	****			+	Z, I O I AL CONTACT		7	3/1/0/
N N	MG/L 0	******** M		******		3	1	***	****	*	******	1	TOTAL CONTAC			4, 1,0,
<u>×</u>	MG/L 0)W *******		***	7	1.0	1.1	***	*******	1	*****		7 TOTAL CONTACT	_ 1_		₫/1/07
⊠ >	0	******** M		********	٧	1.0	1.1	***	******	1	****	_	2, TOTAL CONTACT	157 CL2,		5/1/07
<u>≤</u>	0	******* M(***		1.0	1.2	1	*******	1	******		2, TOTAL CONTACT	157 CL2,		6/1/07
Z A	C			*****		1.0	1.0	į	******	1	*******		2, TOTAL CONTACT	157 CL2,	7/31/07	7/1/07
:	0			****		1.0	1.6	***	******	*	*******	_	2, TOTAL CONTACT	157 CL2,	8/31/07	8/1/07
	0 0			******		1.0	1:1	*	******	*	****	1	2, TOTAL CONTACT	157 CL2,	9/30/07	9/1/07
:	, c					1.0	1.0		****	Ī	*****	_	2, TOTAL CONTACT	157 CL2,	10/31/07	10/1/07
) 0					7.0	1:1		******	‡	***		2, TOTAL CONTACT	157 CL2,	11/30/07	11/1/07
\$ 3 > 2	0 0					7.0	1.4	***	***		****		2, TOTAL CONTACT	157 CL2,	12/31/07	12/1/07
3 ≥ 3) -					1.0	0.9	‡	****	1	*****			157 CL2,	1/31/08	1/1/08
3	\ \ \					7.0	1:		******	1	*******		2, TOTAL CONTACT	157 CL2,	2/29/08	2/1/08
≥ ≥) c	Mich				1.0	1.4	 	*******	*	*****		2, TOTAL CONTACT	157 CL2,	3/31/08 1	3/1/08
: <u>≤</u>				****		7.0	1:1		****	#	******	-7	2, TOTAL CONTACT	157 CL2,	4/30/08 1	4/1/08
: <u>≤</u>	0			*******		1.0	1.1		****	*	******	7	2, TOTAL CONTACT	157 CL2,	3	5/1/08
_ ≥	C	MG/L		****		1.0	1.3	1	*******	*	*******	٦	2, TOTAL CONTACT	157 CL2,	6/30/08 1	6/1/08
:	C			*****		1.0	1.3	1	********	#	******	71	P, TOTAL CONTACT	157 CL2,		7/1/08
: S	0			*****		7.0	1.1	*	*****	1	*******	1	2, TOTAL CONTACT	157 CL2,	8/31/08 1	8/1/08
: <u>≤</u>				****	ĺ	1.0	1.1	*	******	1	******	,	, TOTAL CONTACT	157 CL2,	9/30/08 1	9/1/08
: <u>≤</u>	0	MG/L		******		1.0	1:1	*	******	#	******	•	2, TOTAL CONTACT	157 CL2,	10/31/08 1	10/1/08
: ≤	0			******		1.0	1.3	i	******	\$	*****		2, TOTAL CONTACT	157 CL2,	11/30/08 1	11/1/08
≥	0	MIGIC		7 1		1.0	1:1	•	*******	*	******		, TOTAL CONTACT	157 CL2,	12/31/08 1	12/1/08
≥				*********		1.0	1.2	•	******	:	******		, TOTAL CONTACT	157 CL2,	1/31/09 1	1/1/09
.ed	π ×			Lim Avg	AVG	Lim Min	N N	Aax Unit	X Lim Max	yg MAX	AVG Lim Avg		Parameter Description	.a. 2ar#		Start Date
	1		CONC				ONC ONC			3	2	_				

	<ql 0.008<="" th=""></ql>
0.008	
0.000	/4r 0.000
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
******** <ql 0.008<="" td=""><td>******** <ql 0.008<="" td=""></ql></td></ql>	******** <ql 0.008<="" td=""></ql>
	********* <ql 0.008<="" td=""></ql>
<ql 0.008<="" td=""><td></td></ql>	
********* <ql 0.008<="" td=""><td>********** <ql< td=""></ql<></td></ql>	********** <ql< td=""></ql<>
<ql 0.008<="" td=""><td></td></ql>	
<ql 0.008<="" td=""><td></td></ql>	
*********** <ql 0.008<="" td=""><td>********** <ql< td=""></ql<></td></ql>	********** <ql< td=""></ql<>
*********** <ql 0.008<="" td=""><td>*********** <ql 0.008<="" td=""></ql></td></ql>	*********** <ql 0.008<="" td=""></ql>
********** <ql 0.008<="" td=""><td>********** <ql 0.008<="" td=""></ql></td></ql>	********** <ql 0.008<="" td=""></ql>
********** <ql 0.008<="" td=""><td>********** <ql 0.008<="" td=""></ql></td></ql>	********** <ql 0.008<="" td=""></ql>
<ql 0.008<="" td=""><td>********* <ql 0.008<="" td=""></ql></td></ql>	********* <ql 0.008<="" td=""></ql>
0.008	0.008
<ql 0.008<="" td=""><td>န္</td></ql>	န္
<ql 0.008<="" td=""><td>ê</td></ql>	ê
<ql 0.008<="" td=""><td><ql 0.008<="" td=""></ql></td></ql>	<ql 0.008<="" td=""></ql>
<ql 0.008<="" td=""><td><ql 0.008<="" td=""></ql></td></ql>	<ql 0.008<="" td=""></ql>
<ql 0.008<="" td=""><td>******* <ql< td=""></ql<></td></ql>	******* <ql< td=""></ql<>
<ql 0.008<="" td=""><td>******** <ql< td=""></ql<></td></ql>	******** <ql< td=""></ql<>
******** <ql 0.008<="" td=""><td></td></ql>	
********* <ql 0.008<="" td=""><td>-******** <ql< td=""></ql<></td></ql>	-******** <ql< td=""></ql<>
<ql 0.008<="" td=""><td><ql 0.008<="" td=""></ql></td></ql>	<ql 0.008<="" td=""></ql>
<ql 0.008<="" td=""><td><ql 0.008<="" td=""></ql></td></ql>	<ql 0.008<="" td=""></ql>
< Q L 0.008	Culturous
<ql 0.008<="" td=""><td><ql 0.008<="" td=""></ql></td></ql>	<ql 0.008<="" td=""></ql>
AVG Lim Avg W	MIN Lim Min AVG Lim Avg N
COMO	COMO

Welt 0 Welt 0	******* MG/L	*	*******		I	1 2	******		******	***************************************		
VG/L VG/L VG/L	*******										5/37/06 273 012,	5/1/05
			*****	5		1 2	*****		******	1	0,00,00	0,1700
	********	*	1	O	9.0	1.9	****		*******	\dagger	6/30/06 213	8/1/06
1-1				6	0.6		******		******		7/31/06 213 CL2, INST TECH MIN	7/1/06
4				0		1.2	*****		****		8/31/06 213	8/1/06
	***					1.1			******		9/30/06 213 CL2, INST TECH MIN	9/1/06
4	****		*****			-					10/31/06 213	10/1/06
MG/L 0	*******		*******	* '		<u>.</u>					11/30/06 213	11/1/06
MG/L 0	******		*******	5	0.6	1.4	******		******		4100000 010 010	12/1/00
MG/L 0	********		*******	5	0.6	1.2	***		*******	1	12/31/06 213	10/1/06
-	××××××		*****	6	0.6	1.2	*****		*******		1/31/07 213	1/1/07
╄				6		1:1	*****		*******		2/28/07 213 CL2, INST TECH MIN	2/1/07
+						1:1	*****		******		3/31/07 213 CL2, INST TECH MIN	3/1/07
-				5		1.1	***		****		4/30/07 213 CL2, INST TECH MIN	4/1/07
-				3		1.1	*****		******		5/31/07 213 CL2, INST TECH MIN	5/1/07
MG/I	***					1.2	******		******		6/30/07 213 CL2, INST TECH MIN	6/1/07
4			***	, 3		1.0			*******		7/31/07 213 CL2, INST TECH MIN	7/1/07
-				, 0		1.6			******		8/31/07 213 CL2, INST TECH MIN	8/1/07
+	********* M		****			 					213	9/1/07
MG/L 0	******* M		******	+		<u>+</u>	****	*	****		213 CL2,	/0/1/01
MG/L 0	********		*****	7		1.0	****	*	*******		3 6	11/1/07
MG/L 0	********		*******	5,	0.6	1.1	******	*	*******		213 CI 2	11/1/07
MG/L 0			*******	٠,	0.6	1.4	****	*	****		213	12/1/07
MG/L 0			*****	, 	0.6	0.9	*****	Ję.	*****		1/31/08 213 CL2, INST TECH MIN	1/1/08
╀			*****	<u>"</u>	0.6	1.1	******	*	******		2/29/08 213 CL2, INST TECH MIN	2/1/08
ــــ			*****	, , , , , , , , , , , , , , , , , , ,		1.4	*****	*	*******		3/31/08 213 CL2, INST TECH MIN	3/1/08
┿						1:1	*****	*	*******		4/30/08 213 CL2, INST TECH MIN	4/1/08
╀-						1.1	****	,	*******		5/31/08 213 CL2, INST TECH MIN	5/1/08
4						1.3	****	*	***		6/30/08 213 CL2, INST TECH MIN	6/1/08
-						1.3	***	*	*		7/31/08 213 CL2, INST TECH MIN	7/1/08
-						1.1	*****	•	*		8/31/08 213 CL2, INST TECH MIN	8/1/08
+						1.1	******	*	***************************************		9/30/08 213 CL2, INST TECH MIN	9/1/08
	****** MG/I					1.1	****		1		10/31/08 213 CL2, INST TECH MIN	10/1/08
_						1.3	******	*	****		11/30/08 213 CL2, INST TECH MIN	11/1/08
+						1.1		*	*		12/31/08 213 CL2, INST TECH MIN	12/1/08
+						1.2	******	*	******		1/31/09 213 CL2, INST TECH MIN	1/1/09
2, 4						1.4	*****	*	******		2/28/09 213 CL2, INST TECH MIN	2/1/09
-						1.1	****	1	*		3/31/09 213 CL2, INST TECH MIN	3/1/09
+	MIGIL				0.6	1.9	*****	2	***************************************		4/30/09 213 CL2, INST TECH MIN	4/1/09
_	9.9	Â.		ê				1	1		12/31/03 165 CL2, INST RES MAX	12/1/03
	Τ	T					****	*	***		1/31/04 165 CL2, INST RES MAX	1/1/04
		T		T				2	******		2/29/04 165 CL2, INST RES MAX	2/1/04
1	T	2 6		Ī							3/31/04 165 CL2, INST RES MAX	3/1/04
0	003	ŝ	2000	È		+				3	#	Start Date
Conc Ex	Lim Max	MAX	Lim Avg	AVG	Lim Min	MIN	Lim Max Unit	₹ 27	Lim Avg	QTY AVG	মু Parameter Description	Monitor

													The same of the sa
		7	5		1.6	*	*****		********		1/31/04 213 CL2, INST TECH MIN	1/31/04 21:	1/1/04
			S		1.4	- 			*******		3 CL2, INST TECH MIN	2/29/04 213	2/1/04
			5		1.1	*	****		****		213 CL2, INST TECH MIN	3/31/04 21:	3/1/04
			3		1.0	1	****		***		CL2, INST TECH MIN	4/30/04 213	4/1/04
			9		1.4	*	i		*********		CL2, INST TECH MIN	5/31/04 213	5/1/04
			5		1:3	*	*		*****		6/30/04 213 CL2, INST TECH MIN	6/30/04 21:	
			5	2. 1.	3.8	*	******		********		CL2, INST TECH MIN	7/31/04 213	7/1/04
		*****	3		1.2	*	*				CL2, INST TECH MIN	8/31/04 213	8/1/04
					2.0	*			*******		CL2, INST TECH MIN	9/30/04 213	9/1/04
					1.9	 *	******		*****		CL2, INST TECH MIN	10/31/04 213	10/1/04 1
					1.2	*	*****		****		213 CL2, INST TECH MIN	11/30/04 213	11/1/04 1
					1.0	*			***		CL2, INST TECH MIN	12/31/04 213	12/1/04 1
					1.4	ľ	*****		*******		CL2, INST TECH MIN	1/31/05 213	1/1/05
					2.2	*	*		*******		CL2, INST TECH MIN	2/28/05 213	2/1/05
					1.0	 *	******		*******		CL2, INST TECH MIN	3/31/05 213	3/1/05
		******		0.6	1.4	*	*		*******		CL2, INST TECH MIN	4/30/05 213	4/1/05
		******		0.6	1.2	-	******		*******		CL2, INST TECH MIN	5/31/05 213	5/1/05
	-	*****		0.6	2.6	*	********		*******		CL2, INST TECH MIN	6/30/05 213	6/1/05
		****		0.6	1.5	*	******		********		CL2, INST TECH MIN	7/31/05 213	7/1/05
		****		0.6	2.2	*			********		CL2, INST TECH MIN	8/31/05 213	8/1/05
		*******		0.6	1.8	*			*********		CL2, INST TECH MIN	9/30/05 213	9/1/05
		*****		0.6	1.2	•	1		********		CL2, INST TECH MIN	10/31/05 213	10/1/05 1
		***************************************		0.6	1.2	ľ	*		********		213 CL2, INST TECH MIN	11/30/05 213	11/1/05 1
		***************************************		0.6	1.4	coli A	**		********		12/31/05 213 CL2, INST TECH MIN	/31/05 213	12/1/05 1:
				0.6	1.4		*****		*******		CL2, INST TECH MIN	1/31/06 213	1/1/06
		***************************************		0.6	1.6		****		********		2/28/06 213 CL2, INST TECH MIN	/28/06 213	2/1/06
		********		0.6	1.4		********		*******		CL2, INST TECH MIN	3/31/06 213	3/1/06
Lim Max Unit	MAX L	Lim Avg	AVG	Lim Min	MIN	X Unit	Lim Max	QTY MAX	Lim Avg	QTY AVG	Parameter Description	# 169	Monitor Start Date

```
6/23/2009 2:02:03 PM
Facility = Unionville Elementary School
Chemical = Total Residual Chlorine
Chronic averaging period = 4
         = 19
WLAa
           = 11
WLAc
Q.L.
            = 100
\# samples/mo. = 30
\# samples/wk. = 8
Summary of Statistics:
# observations = 1
Expected Value = 200
Variance = 14400
                     = 0.6
97th percentile daily values = 486.683
97th percentile 4 day average = 332.758
97th percentile 30 day average = 241.210
                   = 0
 # < Q.L.
                      = BPJ Assumptions, type 2 data
Model used
A limit is needed based on Chronic Toxicity
Maximum Daily Limit = 16.0883226245855
Average Weekly limit = 9.59676626920107
Average Monthly LImit = 7.9737131838758
 The data are:
```

200

Attachment 11

Units of measurement are in ug/L.

Unionville Elementary School NPDES - SAA

Location: Located on Route 522, approximately .3 mile south of the

intersection of Route 522 with S.R. 20

Quads Used: Unionville

Lahore

Critical Discharge: .021 cfs/ sq. mi. (North Anna River Near Doswell)

D.A. of Riga Run above confluence with the receiving tributary - 1.25 sq. mi.

 $\frac{\text{Flow}}{1.25 \text{ sq. mi.}} = \frac{1.25 \text{ sq. mi.}}{1.55 \text{ MGD}} = .0169 \text{ MGD}$

D.A. of receiving waters = .59 sq. mi.

Stretch flow = .59 sq. mi. X .021 cfs/sq. mi. = .0079 MGD 1.55 MGD

Y=.3 BCD.:6.8110

Y=.3 Do=6.1834

C1=.0296

Dc= 1.4166

tc: Mixing point Shetch

Present affluent BOD, of 24 mg/l.

Public Notice - Environmental Permit

PURPOSE OF NOTICE: To seek public comment on a draft permit from the Department of Environmental Quality that will allow the release of treated wastewater into a water body in Orange County, Virginia.

PUBLIC COMMENT PERIOD: XXX, 2009 to 5:00 p.m. on XXX, 2009

PERMIT NAME: Virginia Pollutant Discharge Elimination System Permit – Wastewater issued by DEQ, under the authority of the State Water Control Board

APPLICANT NAME, ADDRESS AND PERMIT NUMBER: Orange County School Board, 200 Dailey Drive, Orange, Virginia, 22960, VA0060330

NAME AND ADDRESS OF FACILITY: Unionville Elementary School Wastewater Treatment Plant, 10285 Zachary Taylor Highway, Unionville, Virginia 22567

PROJECT DESCRIPTION: Orange County School Board has applied for a reissuance of a permit for the public Unionville Elementary School Wastewater Treatment Plant The applicant proposes to release treated sewage wastewaters from residential areas at a rate of 0.0047 million gallons per day into a water body. The sludge will be disposed by transporting it to the Massaponax Wastewater Treatment Plant (VA0025658) in Spotsylvania County, Virginia. The facility proposes to release the treated sewage in the unnamed tributary of Riga Run in Orange County in the York River watershed. A watershed is the land area drained by a river and its incoming streams. The permit will limit the following pollutants to amounts that protect water quality: pH, BOD₅, Chlorine, Total Suspended Solids, *E. coli*, Dissolved Oxygen, and Ammonia as N.

HOW TO COMMENT AND/OR REQUEST A PUBLIC HEARING: DEQ accepts comments and requests for public hearing by e-mail, fax or postal mail. All comments and requests must be in writing and be received by DEQ during the comment period. Submittals must include the names, mailing addresses and telephone numbers of the commenter/requester and of all persons represented by the commenter/requester. A request for public hearing must also include: 1) The reason why a public hearing is requested. 2) A brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requestor, including how and to what extent such interest would be directly and adversely affected by the permit. 3) Specific references, where possible, to terms and conditions of the permit with suggested revisions. DEQ may hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit.

CONTACT FOR PUBLIC COMMENTS, DOCUMENT REQUESTS AND ADDITIONAL INFORMATION: The public may review the documents at the DEQ-Northern Regional Office by appointment.

Name: Joan C. Crowther

Address: DEQ-Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193 Phone: (703) 583-3925 E-mail: joan.crowther@deq.virginia.gov Fax: (703) 583-3821

State "Transmittal Checklist" to Assist in Targeting Municipal and Industrial Individual NPDES Draft Permits for Review

Part I. State Draft Permit Submission Checklist

10. Does the permit authorize discharges of storm water?

In accordance with the MOA established between the Commonwealth of Virginia and the United States Environmental Protection Agency, Region III, the Commonwealth submits the following draft National Pollutant Discharge Elimination System (NPDES) permit for Agency review and concurrence.

Facility Name:	Unionville Elemen	tary School Wastewater Treatment Plant			
NPDES Permit Number:	VA0060330				
Permit Writer Name:	Joan C. Crowther				
Date:	June 23, 2009				
Date.					
Major []	Minor [x]	Industrial [] Mun	icipal [x]		
			W 1	N-	N/A
I.A. Draft Permit Package Submi	ittal Includes:		Yes X	No	IV/A
1. Permit Application?		i i i i i i i i i i i i i i i i i i i	 ^ 		
2. Complete Draft Permit (for rene information)?	wal or first time pern	nit – entire permit, including boilerplate	Х		
3. Copy of Public Notice?			X		<u> </u>
4. Complete Fact Sheet?			X		
5. A Priority Pollutant Screening to	o determine paramete	ers of concern?			X
6. A Reasonable Potential analysis	showing calculated	WQBELs?	X		
7. Dissolved Oxygen calculations?			X		
8. Whole Effluent Toxicity Test su	mmary and analysis				X
9. Permit Rating Sheet for new or	modified industrial fa	cilities?			X
7. I Clinic Rusing Sheet let hew ex-					
I.B. Permit/Facility Characterist	ics		Yes	No	N/A
1 Is this a new, or currently unper	mitted facility?			X	
2 Are all permissible outfalls (inc	luding combined sew	er overflow points, non-process water and	X		}
storm water) from the facility p	roperly identified and	authorized in the permit?			ļ
3. Does the fact sheet or permit co	ontain a description o	f the wastewater treatment process?	X	 	ļ
4. Does the review of PCS/DMR of	data for at least the la	st 3 years indicate significant non-	х		1
compliance with the existing pe	ermit?				
5. Has there been any change in st	reamflow characteris	tics since the last permit was developed?	X		↓
6 Does the permit allow the disch	arge of new or increa	sed loadings of any pollutants?		X	
7. Does the fact sheet or permit pr	rovide a description of	f the receiving water body(s) to which the			
facility discharges, including in	nformation on low/cri	tical flow conditions and	X		
designated/existing uses?	202(1) 11 1 1 1 1 2	Olet diseaster deventroom is TMD!			
	303(a) listed water?	(Not directly – downstream is TMDL		Х	1
listed) a. Has a TMDL been develope	d and approved by F	DA for the impaired water?	X		1
a. Has a IMDL been develope	t the TMDI develors	ment is on the State priority list and will	 	 	1
most likely be developed w	ithin the life of the m	ermit?		X	1
c. Does the facility discharge a	pollutant of concern	identified in the TMDL or	v		1
303(d) listed water?			X		
9 Have any limits been removed.	or are any limits less	stringent, than those in the current permit?		X	

I.B. Permit/Facility Characteristics – cont.	Yes	No	N/A
11. Has the facility substantially enlarged or altered its operation or substantially increased its flow or production?		X	
12. Are there any production-based, technology-based effluent limits in the permit?		X	
13. Do any water quality-based effluent limit calculations differ from the State's standard policies or procedures?		х	
14. Are any WQBELs based on an interpretation of narrative criteria?		X	
15. Does the permit incorporate any variances or other exceptions to the State's standards or regulations?		Х	
16. Does the permit contain a compliance schedule for any limit or condition?		X	
17. Is there a potential impact to endangered/threatened species or their habitat by the facility's discharge(s)?		X	
18. Have impacts from the discharge(s) at downstream potable water supplies been evaluated?			X
19. Is there any indication that there is significant public interest in the permit action proposed for this facility?		X	
20. Have previous permit, application, and fact sheet been examined?	X		

Part II. NPDES Draft Permit Checklist

Region III NPDES Permit Quality Checklist – for POTWs (To be completed and included in the record <u>only</u> for POTWs)

II.A. Permit Cover Page/Administration	Yes	No	N/A
1. Does the fact sheet or permit describe the physical location of the facility, including latitude and longitude (not necessarily on permit cover page)?	X	1	
2. Does the permit contain specific authorization-to-discharge information (from where to where, by whom)?	X		i.

II.B. Effluent Limits – General Elements	Yes	No	N/A
1. Does the fact sheet describe the basis of final limits in the permit (e.g., that a comparison of technology and water quality-based limits was performed, and the most stringent limit selected)?	Х		
2. Does the fact sheet discuss whether "antibacksliding" provisions were met for any limits that are less stringent than those in the previous NPDES permit?	X		

II.C. Technology-Based Effluent Limits (POTWs)	Yes	No	N/A
1. Does the permit contain numeric limits for <u>ALL</u> of the following: BOD (or alternative, e.g., CBOD, COD, TOC), TSS, and pH?	X		
2. Does the permit require at least 85% removal for BOD (or BOD alternative) and TSS (or 65% for equivalent to secondary) consistent with 40 CFR Part 133?	X		
a. If no, does the record indicate that application of WQBELs, or some other means, results in more stringent requirements than 85% removal or that an exception consistent with 40 CFR 133.103 has been approved?			X
3. Are technology-based permit limits expressed in the appropriate units of measure (e.g., concentration, mass, SU)?	X		
4. Are permit limits for BOD and TSS expressed in terms of both long term (e.g., average monthly) and short term (e.g., average weekly) limits?	X		
5. Are any concentration limitations in the permit less stringent than the secondary treatment requirements (30 mg/l BOD5 and TSS for a 30-day average and 45 mg/l BOD5 and TSS for a 7-day average)?		X	
a. If yes, does the record provide a justification (e.g., waste stabilization pond, trickling filter, etc.) for the alternate limitations?			X

II.D. Water Quality-Based Effluent Limits	Yes	No	N/A
1. Does the permit include appropriate limitations consistent with 40 CFR 122.44(d) covering State narrative and numeric criteria for water quality?	X		
2. Does the fact sheet indicate that any WQBELs were derived from a completed and EPA approved TMDL?	X		
3. Does the fact sheet provide effluent characteristics for each outfall?	X		
4. Does the fact sheet document that a "reasonable potential" evaluation was performed?	X		
a. If yes, does the fact sheet indicate that the "reasonable potential" evaluation was performed in accordance with the State's approved procedures?	х		
b. Does the fact sheet describe the basis for allowing or disallowing in-stream dilution or a mixing zone?	· X		
c. Does the fact sheet present WLA calculation procedures for all pollutants that were found to have "reasonable potential"?	X		
d. Does the fact sheet indicate that the "reasonable potential" and WLA calculations accounted for contributions from upstream sources (i.e., do calculations include ambient/background concentrations)?	х		
e. Does the permit contain numeric effluent limits for all pollutants for which "reasonable potential" was determined?	X		

II.D. Water Quality-Based Effluent	Limits – cont.		Yes	No	N/A
5. Are all final WQBELs in the permi provided in the fact sheet?	t consistent with the justification and/or do	cumentation	X		
6. For all final WQBELs, are BOTH I	ong-term AND short-term effluent limits e	stablished?			X
7. Are WQBELs expressed in the permit using appropriate units of measure (e.g., mass, concentration)?			Х		
	ntidegradation" review was performed in acolicy?	ccordance with the	Х		
II.E. Monitoring and Reporting Rec	uirements		Yes	No	N/A
. Does the permit require at least annual monitoring for all limited parameters and other			Х		
monitoring as required by State and Federal regulations?			^		
a. If no, does the fact sheet indicate that the facility applied for and was granted a monitoring waiver, AND, does the permit specifically incorporate this waiver?					X
2. Does the permit identify the physical location where monitoring is to be performed for each outfall?			X		
3. Does the permit require at least annual influent monitoring for BOD (or BOD alternative) and			Х		
TSS to assess compliance with applicable percent removal requirements?					
4. Does the permit require testing for Whole Effluent Toxicity?				X	<u> </u>
II.F. Special Conditions			Yes	No	N/A
Does the permit include appropriate biosolids use/disposal requirements?			X	110	1,77
 Does the permit include appropriat 				X	
2. Does the permit metade appropriate	e storm water program requirements.				1
II.F. Special Conditions – cont.			Yes	No	N/A
3. If the permit contains compliance schedule(s), are they consistent with statutory and regulatory					X
deadlines and requirements?					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4. Are other special conditions (e.g., ambient sampling, mixing studies, TIE/TRE, BMPs, special studies) consistent with CWA and NPDES regulations?					X
5. Does the permit allow/authorize dis	scharge of sanitary sewage from points other	er than the POTW			Х
outfall(s) or CSO outfalls [i.e., Sanitary Sewer Overflows (SSOs) or treatment plant bypasses]?					ļ
	es from Combined Sewer Overflows (CSO			X	37
a. Does the permit require implementation of the "Nine Minimum Controls"?					X
b. Does the permit require development and implementation of a "Long Term Control Plan"?					X
c. Does the permit require monitoring and reporting for CSO events?7. Does the permit include appropriate Pretreatment Program requirements?					X
The bottom permit merude appropriation	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				1
II.G. Standard Conditions			Yes	No	N/A
1. Does the permit contain all 40 CF more stringent) conditions?	R 122.41 standard conditions or the State e	quivalent (or	X		
List of Standard Conditions – 40 CF					•
Duty to comply	Property rights	Reporting Requ			
Duty to reapply	Duty to provide information	Planned ch	•		
Need to halt or reduce activity not a defense	Inspections and entry Monitoring and records	Anticipated Transfers	ted noncompliance s ng reports nce schedules		
Duty to mitigate	Signatory requirement				
Proper O & M	Bypass				
Permit actions	porting				
	Upset	Other non-		ice	
2. Does the narmit contain the addition	onal standard condition (or the State equiva	lent or more			
	egarding notification of new introduction of			Х	
Sambon vonanions, for 1 01 WS1	-5 Hours across of Hotel Himoduction C	- Politicality and	1	1 1	

Part III. Signature Page

Based on a review of the data and other information submitted by the permit applicant, and the draft permit and other administrative records generated by the Department/Division and/or made available to the Department/Division, the information provided on this checklist is accurate and complete, to the best of my knowledge.

Name Joan C. Crowther

Title VPDES Permit Writer

Signature June 23, 2009